4.6 Article

Evidence of liquid water formation during methane hydrates dissociation below the ice point

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 64, Issue 6, Pages 1160-1166

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2008.10.067

Keywords

Methane hydrate; Phase change; Supercooled water; Nucleation; Crystallization; Phase equilibria

Funding

  1. Russian Foundation for Basic Research [07-05-00102]
  2. Program for Basic Research of the Presidium of the RAS [16.4.2]

Ask authors/readers for more resources

Dissociation of small methane hydrate samples formed from water droplets of size 0.25-2.5 mm has been investigated below the ice melting point in the temperature range of 240-273 K, where the self-preservation effect is observed for bulk hydrates. The experiments included optical microscopy observations combined with P-T measurements of the dissociation conditions for the methane hydrates. For the first time, the formation of supercooled liquid water during the hydrate dissociation was reliably detected in the temperature range of 253-273 K. The formation of the liquid phase was visually observed. The induction time of the ice nucleation for the metastable liquid water depended from the dissociation temperature and a size of water droplets formed during the hydrate dissociation. It was found that in the temperature range of 253-273 K values of the dissociation pressure for the small hydrate samples fall on the extension of the water-hydrate-gas equilibrium curve into the metastable region where supercooled water exist. The average molar enthalpy of 51.7 kJ/mol for the dissociation of the small methane hydrate samples in the temperature range of 253-273 K was calculated using Clausius-Clapeyron equation. This value agrees with the enthalpy of dissociation of bulk methane hydrates into water and gas at temperatures above 273 K. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available