4.8 Article

Step-by-Step Growth of Complex Oxide Microstructures

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 54, Issue 31, Pages 9011-9015

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201503777

Keywords

hierarchical structures; hybrids; oxides; silica; titanium oxide

Funding

  1. U.S. Department of Energy [DE-AC05-00OR22725]
  2. Laboratory Director's Research and Development Program of the Oak Ridge National Laboratory
  3. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy

Ask authors/readers for more resources

The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. The strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Correction Chemistry, Physical

P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction (vol 19, pg 1215, 2020)

Fang Luo, Aaron Roy, Luca Silvioli, David A. Cullen, Andrea Zitolo, Moulay Tahar Sougrati, Ismail Can Oguz, Tzonka Mineva, Detre Teschner, Stephan Wagner, Ju Wen, Fabio Dionigi, Ulrike I. Kramm, Jan Rossmeisl, Frederic Jaouen, Peter Strasser

NATURE MATERIALS (2023)

Article Chemistry, Applied

TiOx-supported Na-Mn-W oxides for the oxidative coupling of methane

Divakar R. Aireddy, Amitava Roy, David A. Cullen, Kunlun Ding

Summary: Supported Na-Mn-W oxides on titanate nanowires were found to have similar catalytic performance as the commonly studied MnOx/Na2WO4/SiO2 catalyst, with a synergistic effect between MnOx and WOx sites. The titanate support not only acts as a reservoir for alkali metals, but also stabilizes isolated MnOx species, contributing to the high selectivity toward C2+ products and suppressed COx formation.

CATALYSIS TODAY (2023)

Article Chemistry, Physical

La-Sr-Co oxide catalysts for oxygen evolution reaction in anion exchange membrane water electrolyzer: The role of electrode fabrication on performance and durability

Luigi Osmieri, Yanghua He, Hoon T. Chung, Geoffrey McCool, Barr Zulevi, David A. Cullen, Piotr Zelenay

Summary: Anion exchange membrane water electrolysis is an attractive technology for low-cost generation of green hydrogen by combining the use of noble metal-free catalysts with pure water feed. By addressing drawbacks of other electrolysis technologies, it has the potential to replace them.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Physical

Design of graded cathode catalyst layers with various ionomers for fuel cell application

Xiang Lyu, Tim Van Cleve, Erica Young, Jianlin Li, Haoran Yu, David A. Cullen, K. C. Neyerlin, Alexey Serov

Summary: Proton exchange membrane fuel cells (PEMFCs) powered by green hydrogen (H2) are a promising alternative to traditional hydrocarbon-fueled power generators. However, further improvements are needed in efficiency, durability, and low-cost production for widespread adoption. Most strategies to improve PEMFC electrodes utilize single material sets, but anisotropic electrode structures with locally tunable properties may offer enhanced performance due to improved transport.

JOURNAL OF POWER SOURCES (2023)

Article Chemistry, Physical

Electrochemical characterization of evolving ionomer/electrocatalyst interactions throughout accelerated stress tests

Leiming Hu, Tim Van Cleve, Haoran Yu, Jae Hyung Park, Nancy Kariuki, A. Jeremy Kropf, Rangachary Mukundan, David A. Cullen, Deborah J. Myers, K. C. Neyerlin

Summary: The degradation of polymer electrolyte membrane fuel cells (PEMFCs) catalyst layers for heavy-duty vehicles was studied using a catalyst-specific accelerated stress test (AST). The PtCo/HSC catalyst showed better initial mass activity, larger initial mass transport loss, and faster degradation compared to a-Pt/HSC and Pt/HSC catalysts. Pt dissolution resulted in ECSA losses, either by catalyst particle growth or redeposition in the membrane.

JOURNAL OF POWER SOURCES (2023)

Article Electrochemistry

Improved Fuel Cell Chemical Durability of an Heteropoly Acid Functionalized Perfluorinated Terpolymer-Perfluorosulfonic Acid Composite Membrane

ChulOong Kim, Ivy Wu, Mei-Chen Kuo, Dominic J. Carmosino, Ethan W. Bloom, Soenke Seifert, David A. Cullen, Phuc Ha, Matthew J. Lindell, Ruichun Jiang, Craig S. Gittleman, Michael A. Yandrasits, Andrew M. Herring

Summary: Commercial proton exchange membrane heavy-duty fuel cell vehicles require a more durable composite membrane that can potentially conduct protons. We developed a composite membrane incorporating silicotungstic heteropoly acid (HPA) and other materials, which showed less swelling, more hydrophobic properties, and higher crystallinity than conventional membranes. This composite membrane demonstrated a proton conductivity of 0.130 +/- 0.03 S cm(-1) at 80 degrees C and 95% RH, and survived more than 800 hours under accelerated stress test conditions.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Electrochemistry

Electrospun Nanofiber Electrodes for High and Low Humidity PEMFC Operation

Krysta Waldrop, John J. Slack, Cenk Gumeci, Javier Parrondo, Nilesh Dale, Kimberly Shawn Reeves, David A. Cullen, Karren L. More, Peter N. Pintauro

Summary: MEA with nanofiber mat electrodes containing Pt/C catalyst and Nafion binder were fabricated and evaluated. The electrodes were prepared by electrospinning a solution of catalyst powder, salt-form Nafion, and a carrier polymer. MEAs with anode/cathode catalyst loadings of 0.1 mg(Pt) cm(-2) each and a Nafion 211 membrane demonstrated high power at both high and low RH conditions in H-2/air fuel cell tests. The presence of nm-size pores within the fibers trapped water via capillary condensation, maintaining high proton conductivity of the Nafion binder.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2023)

Article Electrochemistry

Outstanding platinum group metal-free bifunctional catalysts for rechargeable zinc-air batteries

Kaur Muuli, Xiang Lyu, Marek Mooste, Maike Kaarik, Barr Zulevi, Jaan Leis, Haoran Yu, David A. Cullen, Alexey Serov, Kaido Tammeveski

Summary: In this study, Fe-N-C catalysts were prepared at a kilogram scale using the commercial VariPoreTM method, and the effect of synthesis conditions on the catalyst performance at ZAB air electrode was investigated. The results showed that the PA-450-HT catalyst exhibited excellent electrocatalytic activity for the oxygen reduction reaction (ORR) and was the most suitable catalyst for primary ZAB, with a galvanostatic polarization discharge peak power density of 149 mW cm-2, outperforming commercial Pt-Ru/C catalysts. Additionally, the NCB-600-HT catalyst displayed outstanding ORR and OER reversibility, with a half-wave potential of 0.87 V vs. RHE and a Delta E value of 0.81 V, and exhibited excellent charge-discharge cycling durability similar to NCB-550-LT for the secondary ZAB. This study reported for the first time the mass production of outstanding bifunctional Fe-N-C catalysts for rechargeable ZAB.

ELECTROCHIMICA ACTA (2023)

Article Chemistry, Physical

Natural fiber-derived gas diffusion layers for high performance, lower cost PEM fuel cells

D. P. Leonard, S. Komini Babu, J. S. Baxter, H. M. Meyer, D. A. Cullen, R. L. Borup

Summary: The high production cost of gas diffusion layer (GDL) in proton exchange membrane fuel cells is mainly due to the use of polyacrylonitrile (PAN) fibers. This study examines the performance of inexpensive natural fiber-based papers and fabric as GDLs, and the improvements achieved by incorporating a microporous layer, gas-phase hydrophobic treatment, and densification. The resulting GDLs demonstrate comparable performance to the commercial baseline GDL and highlight the potential of reducing GDL manufacturing costs.

JOURNAL OF POWER SOURCES (2023)

Article Polymer Science

Effect of isopropanol cosolvent on the rheology and spinnability of aqueous polyacrylic acid solutions

Sunilkumar Khandavalli, Yingying Chen, Nisha Sharma-Nene, Kashyap Sundara Rajan, Samrat Sur, Jonathan P. Rothstein, Kimberley S. S. Reeves, David A. A. Cullen, K. C. Neyerlin, Scott A. A. Mauger, Michael Ulsh

Summary: We investigated the effect of alcohol fraction in a binary water-alcohol solvent mixture on the rheological properties and fiber formation of poly(acrylic acid) in electrospinning. We found that the addition of alcohol induces association/aggregation of the polymer, which affects its viscosity and elasticity. The presence of alcohol also stabilizes the jets/filaments during electrospinning, resulting in improved fiber formation.

JOURNAL OF POLYMER SCIENCE (2023)

Article Chemistry, Multidisciplinary

Trace level of atomic copper in N-doped graphene quantum dots switching the selectivity from C1 to C2 products in CO electroreduction

X. Lyu, T. Zhang, Z. Li, C. J. Jafta, A. Serov, I. -H. Hwang, C. Sun, D. A. Cullen, J. Li, J. Wu

Summary: This study investigates the effect of trace Cu loading on metal-free catalysts for CO/CO2 reduction reactions (CORR). It is found that increasing Cu loading switches the selectivity from C1 (CH4) to C2 products in CORR. At a Cu loading of 2.5 mu g/cm2, the Faradaic efficiency of CH4 in CORR decreased from 62% to 52% for C2 products. Further increasing the atomic Cu loading to 3.8 mu g/cm2 promotes the Faradaic efficiency of C2 products to 78%. CO2RR requires higher Cu loading than CORR to switch the selectivity from C1 to C2 products. This study clarifies the distinct impact of trace Cu on the activity/selectivity between CORR and CO2RR.

MATERIALS TODAY CHEMISTRY (2023)

Article Electrochemistry

Large-scale synthesis of metal/nitrogen Co-doped carbon catalysts for CO2 electroreduction

Xiang Lyu, Dimitra Anastasiadou, Jithu Raj, Jingjie Wu, Yaocai Bai, Jianlin Li, David A. Cullen, Jun Yang, Liliana P. L. Gonsalves, Oleg I. Lebedev, Yury V. Kolen'ko, Marta Costa Figueiredo, Alexey Serov

Summary: A facile approach for synthesizing M-N-C catalysts (M = Co, Fe, Ni) without organic solvents at a commercial scale is reported. Single atomic catalysts with high surface areas were successfully obtained. Among the synthesized catalysts, Ni-N-C exhibited the highest performance in the electrochemical CO2 reduction reaction, with 80% Faradaic efficiency of CO production at -0.49 VRHE and a turnover frequency of 57,379 h-1. The large-scale synthesis and high performance of M-N-C catalysts enable their practical implementation in industrially relevant CO2RR.

ELECTROCHIMICA ACTA (2023)

Article Materials Science, Multidisciplinary

Microstructural characterization of the CGB graphite grade from the molten salt reactor experiment*

J. David Arregui-Mena, Philip D. Edmondson, David Cullen, Samara Levine, Cristian Contescu, Yutai Katoh, Nidia Gallego

Summary: In the 1960s, the feasibility of molten salt reactors for civil applications was demonstrated by the Molten Salt Reactor Experiment using CGB graphite as the fast neutron moderator. Additional impregnation steps were taken to reduce molten salt ingression, but little information has been published about the microstructure or sealant of this graphite grade. The study presents advanced microscopy results and investigates the sealing technology of legacy material from the Molten Salt Reactor Experiment, providing insights for potential reutilization in modern reactors.

JOURNAL OF NUCLEAR MATERIALS (2023)

Article Materials Science, Multidisciplinary

Amino-tethering synthesis strategy toward highly accessible sub-3-nm L10-PtM for-power fuel cells

Qing Gong, Hong Zhang, Haoran Yu, Sungho Jeon, Yang Ren, Zhenzhen Yang, Cheng-Jun Sun, Eric A. Stach, Alexandre C. Foucher, Yikang Yu, Matthew Smart, Gabriel M. Filippelli, David A. Cullen, Ping Liu, Jian Xie

Summary: Researchers have developed a simple method to deposit sub-3-nm L10-PtM nanoparticles onto carbon supports, resulting in improved Pt utilization and mass transport in polymer electrolyte membrane fuel cells. This approach achieved excellent oxygen reduction reaction activity, high power density, and durability, meeting the targets set by the Department of Energy.

MATTER (2023)

Article Nanoscience & Nanotechnology

Robust Copper-Based Nanosponge Architecture Decorated by Ruthenium with Enhanced Electrocatalytic Performance for Ambient Nitrogen Reduction to Ammonia

Kui Li, Lei Ding, Zhiqiang Xie, Gaoqiang Yang, Shule Yu, Weitian Wang, David A. Cullen, Harry M. Meyer III, Guoxiang Hu, Panchapakesan Ganesh, Thomas R. Watkins, Feng-Yuan Zhang

Summary: Electrochemical conversion of nitrogen to green ammonia is hindered by the lack of efficient electrocatalysts. In this study, a cost-effective bimetallic Ru-Cu mixture catalyst in a nanosponge architecture was designed. The optimized Ru0.15Cu0.85 NS catalyst exhibited impressive N2RR performance and superior stability, surpassing monometallic Ru and Cu nanostructures. This work contributes to the design of efficient electrocatalysts for ambient electrochemical ammonia production.

ACS APPLIED MATERIALS & INTERFACES (2023)

No Data Available