4.7 Article

Experimental investigation and mathematical modeling of oxygen permeation through dense Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) perovskite-type ceramic membranes

Journal

CERAMICS INTERNATIONAL
Volume 38, Issue 6, Pages 4797-4811

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2012.02.068

Keywords

Diffusion; Perovskite; Membranes; Mathematical modeling

Ask authors/readers for more resources

Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) perovskite powder was synthesized via EDTA/citrate complexation method. BSCF membranes were formed by pressing powder at 400 MPa and sintering at 1100 degrees C for ID h. XRD patterns showed that a high pure powder with cubic structure was obtained. SEM micrographs revealed that the membranes are dense with large grains. Effects of temperature, feed and permeate side oxygen partial pressures, flow rates and membrane thickness on oxygen permeation flux were studied experimentally. A Nernst-Planck based mathematical model, including surface exchange kinetics and bulk diffusion, was developed to predict oxygen permeation flux. Considering non-elementary surface reactions and introducing system hydrodynamics into the model resulted in an excellent agreement (RMSD = 0.0617, AAD = 0.0487 and R-2 = 0.985) between predicted and measured fluxes. The results showed that oxygen permeation flux increases with temperature, feed side oxygen partial pressure and flow rates, however decreases with permeate side oxygen partial pressure and membrane thickness. Contribution of feed side surface exchange reactions, bulk diffusion and permeate side surface exchange reactions resistances in the total resistance are in the range of 8-32%, 10-81% and 11-59%, respectively. Permeation rate-limiting step was determined using the membrane dimensionless characteristic thickness. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available