4.7 Article

Contraction gradient induced microcracking in hardened cement paste

Journal

CEMENT & CONCRETE COMPOSITES
Volume 33, Issue 4, Pages 466-473

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2011.02.004

Keywords

Drying; Shrinkage; Microcracking; Cement paste; Crack detection

Ask authors/readers for more resources

Drying induced cracking of concrete surfaces and repair layers is a common problem. A principal cause for this type of cracking is the moisture and resulting contraction gradient that develops in the cement paste matrix upon drying. This phenomenon has been experimentally quantified in unconfined hardened cement paste samples using a fluorescent resin impregnation technique. The effects of sample thickness and drying method on surface crack density and crack penetration depth are reported and explained. Finite element modelling of moisture gradients indicate the important role of the film coefficient in desiccation cracking of unconfined samples. The critical thickness for samples to remain crack-free upon drying was in the range of 2-5 mm depending on drying method. In thicker samples a crack spacing doubling process was observed that is in agreement with theoretical predictions. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available