4.6 Article

Microtubule dynamics regulates Akt signaling via dynactin p150

Journal

CELLULAR SIGNALLING
Volume 26, Issue 8, Pages 1707-1716

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cellsig.2014.04.007

Keywords

Akt; Microtubules; Signal transduction; Protein phosphorylation; Cell death

Categories

Funding

  1. NIH [HL085100, HL095489, AI076471]
  2. American Cancer Society

Ask authors/readers for more resources

Following activation at the plasma membrane, Akt is subsequently deactivated in the cytoplasm. Although activation and deactivation of Akt must sometimes be separated in order to elicit and control cellular responses, the exact details of the spatiotemporal organization of Ala signaling are incompletely understood. Here we show that microtubule dynamics specifically modulate the deactivation phase of Akt signaling. Localization of Akt to microtubules sustains its activity, while disruption of microtubules attenuates Akt signaling independent of its initial activation. Conversely, stabilization of microtubules elevates Akt signaling both in vitro and in muscle tissues in vivo. Localization of Akt to microtubules is mediated by the microtubule binding protein dynactin p150, which is shown to be a direct target of Akt Finally, microtubule disruption-induced Akt deactivation contributes to delayed cell cycle progression and accelerated cell death. Taken together, we revealed that, after initiation, the overall intensity and duration of oncogenic Akt signaling are determined by microtubule dynamics, a mechanism that could be exploited for therapeutic purposes. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available