4.5 Article Proceedings Paper

Structural Insights into the Function of P2X4: An ATP-Gated Cation Channel of Neuroendocrine Cells

Journal

CELLULAR AND MOLECULAR NEUROBIOLOGY
Volume 30, Issue 8, Pages 1251-1258

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10571-010-9568-y

Keywords

P2X receptors; ATP; Gating; Orthosteric and allosteric regulation; Ivermectin; Trace metals; Scanning mutagenesis

Funding

  1. Intramural NIH HHS [ZIA HD000195-17] Funding Source: Medline

Ask authors/readers for more resources

The P2X4 receptor (P2X4R) is a member of a family of ATP-gated cation channels that are composed of three subunits. Each subunit has two transmembrane (TM) domains linked by a large extracellular loop and intracellularly located N- and C-termini. The receptors are expressed in excitable and non-excitable cells and have been implicated in the modulation of membrane excitability, calcium signaling, neurotransmitter and hormone release, and pain physiology. P2X4Rs activate rapidly and desensitize within the seconds of agonist application, both with the rates dependent on ATP concentrations, and deactivate rapidly and independently of ATP concentration. Disruption of conserved cysteine ectodomain residues affects ATP binding and gating. Several ectodomain residues of P2X4R were identified as critical for ATP binding, including K67, K313, and R295. Ectodomain residues also account for the allosteric regulation of P2X4R; HI 40 is responsible for copper binding and H286 regulates receptor functions with protons. Ivermectin sensitized receptors, amplified the current amplitude, and slowed receptor deactivation by binding in the TM region. Scanning mutagenesis of TMs revealed the helical topology of both domains, and suggested that receptor function is critically dependent on the conserved Y42 residue. In this brief article, we summarize this study and re-interpret it using a model based on crystallization of the zebrafish P2X4.1 receptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available