4.7 Article

Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells

Journal

CELLULAR & MOLECULAR IMMUNOLOGY
Volume 7, Issue 2, Pages 123-132

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cmi.2010.1

Keywords

AMPK; inflammation; lupus; metabolism; MRL/lpr

Categories

Funding

  1. Harvey Peters Foundation (Peairs)
  2. Arthritis Foundation (Reilly)
  3. NIH/NIAD [IR15A1072756]

Ask authors/readers for more resources

Epigallocatechin-3-gallate (EGCG), a bioactive component of green tea, has been reported to exert anti-inflammatory effects on immune cells. EGCG is also shown to activate the metabolic regulator, adenosine 5'-monophosphate-activated protein kinase (AMPK). Reports have also indicated that EGCG inhibits the immune-stimulated phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. The PI3K/Akt/mTOR pathway has been implicated in mesangial cell activation in lupus. Mesangial cells from MRL/lpr lupus-like mice are hyper-responsive to immune stimulation and overproduce nitric oxide (NO) and other inflammatory mediators when stimulated. In our current studies, we sought to determine the mechanism by which EGCG attenuates immune-induced expression of pro-inflammatory mediators. Cultured mesangial cells from MRL/lpr mice were pre-treated with various concentrations of EGCG and stimulated with lipopolysaccharide (LPS)/interferon (IFN)-gamma. EGCG activated AMPK and blocked LPS/IFN-gamma-induced inflammatory mediator production (iNOS expression, supernatant NO and interleukin-6). Interestingly, EGCG attenuated inflammation during AMPK inhibition indicating that the anti-inflammatory effect of EGCG may be partially independent of AMPK activation. Furthermore, we found that EGCG effectively inhibited the immune-stimulated PI3K/Akt/mTOR pathway independently of AMPK, by decreasing phosphorylation of Akt, suggesting an alternate mechanism for EGCG-mediated anti-inflammatory action in mesangial cells. Taken together, these studies show that EGCG attenuated inflammation in MRL/lpr mouse mesangial cells via the PI3K/Akt/mTOR pathway. Our findings suggest a potential therapeutic role for the use of EGCG to regulate inflammation and control autoimmune disease. Cellular & Molecular Immunology(2010) 7, 123-132; doi:10.1038/cmi.2010.1; published online 8 February 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available