4.7 Article

MicroRNA-1258 suppresses tumour progression via GRB2/Ras/Erk pathway in non-small-cell lung cancer

Journal

CELL PROLIFERATION
Volume 51, Issue 6, Pages -

Publisher

WILEY
DOI: 10.1111/cpr.12502

Keywords

-

Categories

Ask authors/readers for more resources

Objectives Lung cancer is still a disease with high morbidity and mortality in the world. MicroRNAs have been proven to act as an indispensable role in the reuse of multiple solid tumours. Although miR-1258 plays a vital role in suppressing metastasis in breast cancer and gastric cancer, the specific biological function of miR-1258 in non-small-cell lung cancer remains unclear. Methods The differential expression of miR-1258 in NSCLC tissues and corresponding paracancerous tissues was detected by qRT-PCR and ISH. Flow cytometry and CCK-8, EdU, tubule formation, and senescence assays were performed, and xenograft models were studied to explore the function of miR-1258. Potential targets of miR-1258 were verified by dual luciferase reporter assay, qRT-PCR, IHC and Western blotting. Results In vitro and in vivo gain- and loss-of-function assays suggested that miR-1258 inhibits NSCLC cell proliferation and induces senescence and apoptosis. The luciferase reporter assay, IHC and Western blotting analysis showed that GRB2 is one of the direct targets of miR-1258. The GRB2 overexpression plasmid can reverse the functional changes after overexpression of miR-1258. In contrast, miR-1258 inhibitor significantly reversed si-GRB2-induced GRB2 down-regulation. Mechanistically, overexpression of miR-1258 inhibits GRB2 expression and then leads to inactivation of the Ras/Erk oncogenic pathway. Conclusions Our results indicate that miR-1258 can suppress NSCLC progression by targeting the GRB2/Ras/Erk pathway, which may lead to different insights into potential biomarkers and novel therapeutic strategies for NSCLC patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available