4.7 Article

Heparin regulates colon cancer cell growth through p38 mitogen-activated protein kinase signalling

Journal

CELL PROLIFERATION
Volume 43, Issue 1, Pages 9-18

Publisher

WILEY
DOI: 10.1111/j.1365-2184.2009.00649.x

Keywords

-

Categories

Funding

  1. E.U.-European Social Fund
  2. Greek Ministry of Development-GSRT [KA2337]

Ask authors/readers for more resources

Objectives: Heparin acts as an extracellular stimulus capable of activating major cell signalling pathways. Thus, we examined the putative mechanisms utilized by heparin to stimulate HT29, SW1116 and HCT116 colon cancer cell growth. Materials and methods: Possible participation of the mitogen-activated protein kinase (MAPK) cascade on heparin-induced HT29, SW1116 and HCT116 colon cancer cell growth was evaluated using specific MAPK cascade inhibitors, Western blot analysis, real-time quantitative PCR and FACS apoptosis analysis. Results: Treatment with a highly specific p38 kinase inhibitor, SB203580, significantly (50-70%) inhibited heparin-induced colon cancer cell growth, demonstrating that p38 MAPK signalling is involved in their heparin-induced proliferative response. This was shown to be correlated with increased (up to 3-fold) phosphorylation of 181/182 threonine/tyrosine residues on p38 MAP kinase. Furthermore, heparin inhibited cyclin-dependent kinase inhibitor p21WAF1/CIP1 and p53 tumour suppressor gene and protein expression up to 2-fold or 1.8-fold, respectively, and stimulated cyclin D1 expression up to 1.8-fold, in these cell lines through a p38-mediated mechanism. On the other hand, treatment with heparin did not appear to affect HT29, SW1116 and HCT116 cell levels of apoptosis. Conclusions: This study demonstrates that an extracellular glycosaminoglycan, heparin, finely modulates expression of genes crucial to cell cycle regulation through specific activation of p38 MAP kinase to stimulate colon cancer cell growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available