4.6 Article

Cut1/separase-dependent roles of multiple phosphorylation of fission yeast Cohesion subunit Rad21 in post-replicative damage repair and mitosis

Journal

CELL CYCLE
Volume 7, Issue 6, Pages 765-776

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/cc.7.6.5530

Keywords

cohesin; phosphorylation; damage checkpoint; Rad3/ATR; mitosis; polo

Categories

Ask authors/readers for more resources

Cohesin is a multiprotein complex essential for sister-chromatid cohesion. It plays a pivotal role in proper chromosome segregation and DNA damage repair. The mitotic behavior of cohesin is controlled through its phosphorylation, which possibly induces the dissociation of cohesin from chromosomes and enhances its susceptibility to separase. Here, we report using mass spectrometry and anti-phospho antibodies that the central domain of Rad21, the separase-target subunit of Schizosaccharomyces pombe cohesin, is regulated by various kinase-induced phosphorylation at nine residues, indicating the multiple roles for S. pombe cohesin. In vegetative and non-dividing G(0) cells, Rad21 is phosphorylated by unknown S/TP-consensus kinases, in mitotic and non-mitotic cells by polo/Plo1 and CDK, and in DNA-damaged cells by Rad3/ ATR. While mitotic phosphorylation is implicated in the dissociation of Rad21 and its cleavage by separase in anaphase, the Rad3/ATR-dependent damage-induced phosphorylation occurs intensively at the time of repair completion, and only in post-replicative cells. This damage-induced Rad21 phosphorylation is involved in the recovery process of cells from checkpoint arrest, and needed for the removal of cohesin by separase after the completion of damage repair. These complex phospho-regulations of Rad21 indicate the functional significance of cohesin in cell adaptation to a variety of cellular conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available