4.7 Article

RACK1 is involved in endothelial barrier regulation via its two novel interacting partners

Journal

CELL COMMUNICATION AND SIGNALING
Volume 11, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1478-811X-11-2

Keywords

Endothelial cell; Prenylation; RACK1; TIMAP

Categories

Funding

  1. Hungarian Science Research Fund [CNK80709]
  2. UD Faculty of Medicine Research Fund
  3. [TAMOP-4.2.2/B-10/1-2010-0024]
  4. [TAMOP-4.2.2.A-11/1/KONV-2012-0025]

Ask authors/readers for more resources

Background: RACK1, receptor for activated protein kinase C, serves as an anchor in multiple signaling pathways. TIMAP, TGF-beta inhibited membrane-associated protein, is most abundant in endothelial cells with a regulatory effect on the endothelial barrier function. The interaction of TIMAP with protein phosphatase 1 (PP1c delta) was characterized, yet little is known about its further partners. Results: We identified two novel interacting partners of RACK1, namely, TGF-beta inhibited membrane-associated protein, TIMAP, and farnesyl transferase. TIMAP is most abundant in endothelial cells where it is involved in the regulation of the barrier function. WD1-4 repeats of RACK1 were identified as critical regions of the interaction both with TIMAP and farnesyl transferase. Phosphorylation of TIMAP by activation of the cAMP/PKA pathway reduced the amount of TIMAP-RACK1 complex and enhanced translocation of TIMAP to the cell membrane in vascular endothelial cells. However, both membrane localization of TIMAP and transendothelial resistance were attenuated after RACK1 depletion. Farnesyl transferase, the enzyme responsible for prenylation and consequent membrane localization of TIMAP, is present in the RACK1-TIMAP complex in control cells, but it does not co-immunoprecipitate with TIMAP after RACK1 depletion. Conclusions: Transient parallel linkage of TIMAP and farnesyl transferase to RACK1 could ensure prenylation and transport of TIMAP to the plasma membrane where it may attend in maintaining the endothelial barrier as a phosphatase regulator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available