4.3 Article

Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling

Journal

CELL CALCIUM
Volume 45, Issue 3, Pages 264-274

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2008.11.005

Keywords

Skeletal ryanodine receptor; Variably spliced residues; Excitation-contraction coupling; Myotonic dystrophy; Development; Nuclear magnetic resonance; Structure

Categories

Funding

  1. Australian National Health and Medical Research Council [316937]
  2. National Institute of Health [AR44657]

Ask authors/readers for more resources

Alternative splicing of ASI residues (Ala(3481)-GIn(3485)) in the skeletal muscle ryanodine receptor (RyR1) is developmentally regulated: the residues are present in adult ASI(+)RyR1, but absent in the juvenile ASI(-)RyR1 which is over-expressed in adult myotonic dystrophy type 1 (DM1). Although this splicing switch may influence RyR1 function in developing muscle and DM1, little is known about the properties of the splice variants. We examined excitation-contraction (EC) coupling and the structure and interactions of the ASI domain (Thr(3471)-Gly(3500)) in the splice variants. Depolarisation-dependent Ca2+ release was enhanced by >50% in myotubes expressing ASI(-)RyR1 compared with ASI(+)RyR1, although DHPR L-type currents and SIR Ca2+ content were unaltered, while ASI(-)RyR1 channel function was actually depressed. The effect on EC coupling did not depend on changes in ASI domain secondary structure. Probing RyR1 function with peptides possessing the ASI domain sequence indicated that the domain contributes to an inhibitory module in RyR1. The action of the peptide depended on a sequence of basic residues and their alignment in an alpha-helix adjacent to the ASI splice site. This is the first evidence that the ASI residues contribute to an inhibitory module in RyR1 that influences EC coupling. Implications for development and DM1 are discussed. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available