4.4 Article

Establishment and characterization of two cell lines derived from primary cultures of Gekko japonicus cerebral cortex

Journal

CELL BIOLOGY INTERNATIONAL
Volume 34, Issue 2, Pages 153-161

Publisher

WILEY
DOI: 10.1042/CBI20090015

Keywords

Gekko japonicus; immortalization; neuroglial cell; simian-virus-40 large T-antigen

Categories

Funding

  1. Ministry of Science and Technology of China [2003CB515306]
  2. National Natural Science Foundation of China [30600172]
  3. Basic Research Program of Jiangsu Education Department [05KJA31010]
  4. Natural Science Research Program of Jiangsu Education Department [07KJB180097]

Ask authors/readers for more resources

Adult Gekko japonicus is one of those vertebrates that are able to regenerate their missing or amputated tail. The most interesting feature of this animal lies in the ability of its spinal cord to regrow a functional tail. A fundamental question is whether the neuroglial cells play a different role compared with high vertebrates. Since in vitro studies using primary neuroglial cells are hampered by the limited lifespan and miscellaneous genetic background of these cells, we generated neuroglial cell lines from primary cell cultures of cerebral cortex of G. japonicus. The SV40 (simian-virus-40) T antigen gene was introduced into primary cell cultures. Cell cycle analysis, cell growth and proliferation, cell colony formation and contact inhibition, as well as karyotype assays were investigated. Two cell colonies, Gsn-1 and Gsn-3, were immunochemically characterized as glial fibrillary acidic protein and galactocerebroside-positive respectively. Compared with parental primary cells, the Gsn cells displayed shorter population doubling time, decreased percentage of cells in the G0/G1 phase, higher cell proliferation index, and increased cell activity. In assays of colony characteristics, Gsn cells showed increased cell activity at the lower cell densities or FBS (fetal bovine serum) supplement. The karyotype of immortalized Gsn cells exhibited transformational characteristics with hyperdiploid and polyploid chromosomes. The cell lines will provide a useful in vitro model for gecko neuroglial cells and facilitate systematic studies investigating the biological functions of specific gene products related to regeneration of the central nervous system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available