4.6 Article

Histone H4 deacetylation down-regulates catalase gene expression in doxorubicin-resistant AML subline

Journal

CELL BIOLOGY AND TOXICOLOGY
Volume 28, Issue 1, Pages 11-18

Publisher

SPRINGER
DOI: 10.1007/s10565-011-9201-y

Keywords

Catalase; DNA methylation; Histone deacetylation

Funding

  1. National Research Foundation of Korea
  2. Ministry of Education, Science and Technology (MEST) through the Research Center for Resistant Cells [R13-2003-009]

Ask authors/readers for more resources

We explored if epigenetic mechanisms could be involved in the down-regulated expression of catalase gene (CAT) in the doxorubicin-resistant acute myelogenous leukemia (AML)-2/DX100 cells. Down-regulated CAT expression in AML-2/DX100 cells was completely recovered after treatment of hydrogen peroxide (H2O2) and histone deacetylase inhibitor, trichostatin A (TSA) but was increased slightly by the treatment of DNA methylation inhibitor, 5-aza-2'-deoxycytidine (5-AdC). Bisulfite-sequencing PCR revealed that a CpG island of CAT was not methylated in AML-2/DX100 cells. Chromatin immunoprecipitation assay confirmed that acetylation of histone H4 in AML-2/DX100 cells significantly decreased as compared with that in AML-2/WT cells, which was significantly increased by TSA more than 5-AdC. Meanwhile, overexpression of other up-regulated peroxidase genes appears to make compensation for decreased H2O2-scavenging activity for the down-regulated CAT expression in AML-2/DX100 cells. These results suggest that histone H4 deacetylation is responsible for the down-regulated CAT expression in AML-2/DX100 cells, which are well adapted to oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available