4.4 Article

Semaphorin-3A and its receptor neuropilin-1 are predominantly expressed in endothelial cells along the rostral migratory stream of young and adult mice

Journal

CELL AND TISSUE RESEARCH
Volume 333, Issue 2, Pages 175-184

Publisher

SPRINGER
DOI: 10.1007/s00441-008-0643-3

Keywords

blood vessels; neuroblast migration; adult neurogenesis; angiogenesis; vascular endothelial growth factor; mouse (CDI); rat

Categories

Ask authors/readers for more resources

In the adult brain, neuroblasts originating in the subventricular zone migrate through the rostral migratory stream to the olfactory bulb. While migrating, neuroblasts undergo progressive differentiation until reaching their final locations and fates. Because molecules involved in migration may also exert differentiating effects on young neurons, the identification of factors that support migration could also shed light on the processes of adult neuroblast differentiation. This is the case for members of the family of semaphorins and of its cognate receptors, the neuropilins. Here, we have evaluated the presence of semaphorin-3A and of its receptor neuropilin-1 along the rostral migratory stream in young and adult mice by using immunocytochemical, histochemical, and in situ hybridization techniques. Our morphological studies show that semaphorin-3A and neuropilin-1 are both mainly expressed on endothelial cells along the rostral migratory stream during postnatal development. Our results suggest that endothelial cells constitute the primary source and target of semaphorin-3A along the rostral migratory stream. Moreover, the present work outlines the potential role of blood vessels on neuroblast migration in the postnatal rostral migratory stream.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available