4.5 Article

Molybdenum Schiff Base Complex Covalently Anchored to Silica-Coated Cobalt Ferrite Nanoparticles as a Novel Heterogeneous Catalyst for the Oxidation of Alkenes

Journal

CATALYSIS LETTERS
Volume 142, Issue 3, Pages 319-325

Publisher

SPRINGER
DOI: 10.1007/s10562-012-0770-z

Keywords

Cobalt ferrite; Alkenes oxidation; Magnetic nanoparticles; Schiff base; Surface functionalization; Molybdenum catalyst

Funding

  1. Research Council of Shahid Chamran University, Ahvaz, Iran

Ask authors/readers for more resources

Silica-coated cobalt ferrite nanoparticles were prepared and functionalized with Schiff base groups to yield immobilized bidentate ligands. The functionalized magnetic nanoparticles were then treated with Mo (O-2)(2)(acac)(2), resulting in the novel immobilized molybdenum Schiff base catalyst. The as-prepared catalyst was characterized by X-ray powder diffraction, transmission electron microscopy, vibrating sample magnetometry, thermogravimetric analysis, Fourier transform infrared, and inductively coupled plasma atomic emission spectroscopy. The immobilized molybdenum complex was shown to be an efficient heterogeneous catalyst for the oxidation of various alkenes using t-BuOOH as oxidant. This catalyst, which is easily recovered by simple magnetic decantation, could be reused several times without significant degradation in catalytic activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available