4.7 Article

Nandrolone attenuates aortic adaptation to exercise in rats

Journal

CARDIOVASCULAR RESEARCH
Volume 97, Issue 4, Pages 686-695

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvs423

Keywords

Aerobic training; Nandrolone; Vessel adaptation; Mitochondrial dynamic remodelling; Oxidative stress

Funding

  1. National Natural Science Foundation of China [30871002, 81070325, 30971154, 31171099, 81272010]
  2. Shanghai Science and Technology Committee, Shanghai [10DZ1976000, 12231203000]
  3. National Basic Research Program of China [2009CB521907]

Ask authors/readers for more resources

In this study, we investigated the interaction between exercise-induced mitochondrial adaptation of large vessels and the effects of chronic anabolic androgenic steroids (AASs). Four groups of SpragueDawley rats were studied: (i) sedentary, (ii) sedentary nandrolone-treated, (iii) aerobic exercise trained, and (iv) trained nandrolone-treated. Aerobic training increased the levels of aortic endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) in accordance with improved acetylcholine-induced vascular relaxation. These beneficial effects were associated with induction of mitochondrial complexes I and V, increased mitochondrial DNA copy number, and greater expression of transcription factors involved in mitochondrial biogenesis/fusion. We also observed enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein-7 (ATG7). The levels of thiobarbituric acid-reactive substances and protein carbonyls remained unchanged, whereas significant increases in catalase and mitochondrial manganese superoxide dismutase (MnSOD) levels were observed in the aortas of trained animals, when compared with sedentary controls. Nandrolone increased oxidative stress biomarkers and inhibited exercise-induced increases of eNOS, HO-1, catalase, and MnSOD expression. In addition, it also attenuated elevated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1) and mitofusin-2 expression, and further up-regulated LC3II conversion, beclin1, ATG7, and dynamin-related protein-1 expression. These results demonstrate that nandrolone attenuates aortic adaptations to exercise by regulating mitochondrial dynamic remodelling, including down-regulation of mitochondrial biogenesis and intensive autophagy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available