4.7 Article

A novel urokinase receptor-targeted inhibitor for plasmin and matrix metalloproteinases suppresses vein graft disease

Journal

CARDIOVASCULAR RESEARCH
Volume 88, Issue 2, Pages 367-375

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvq203

Keywords

Gene therapy; Matrix metalloproteinases; Plasmin(ogen); Vein graft disease; Vascular surgery

Funding

  1. Netherlands Heart Foundation [M93.001, 2005B106]
  2. DPTE [VGT6747]

Ask authors/readers for more resources

Matrix metalloproteinases (MMP) and plasminogen activator (PA)/plasmin-mediated proteolysis, especially at the cell surface, play important roles in matrix degeneration and smooth muscle cell migration, which largely contributes to vein graft failure. In this study, a novel hybrid protein was designed to inhibit both protease systems simultaneously. MMP and plasmin activity were inhibited at the cell surface by this hybrid protein, consisting of the receptor-binding amino-terminal fragment (ATF) of urokinase-type PA, linked to both the tissue inhibitor of metalloproteinases (TIMP-1) and bovine pancreas trypsin inhibitor (BPTI), a potent protease inhibitor. The effect of overexpression of this protein on vein graft disease was studied. A non-viral expression vector encoding the hybrid protein TIMP-1.ATF.BPTI was constructed and validated. Next, cultured segments of human veins were transfected with this vector. Expressing TIMP-1.ATF.BPTI in vein segments resulted in a mean 36 +/- 14% reduction in neointima formation after 4 weeks. In vivo inhibition of vein graft disease by TIMP-1.ATF.BPTI is demonstrated in venous interpositions placed into carotid arteries of hypercholesterolaemic APOE*3Leiden mice. After 4 weeks, vein graft thickening was significantly inhibited in mice treated with the domains TIMP-1, ATF, or BPTI (36-49% reduction). In the TIMP-1.ATF.BPTI-treated mice, vein graft thickening was reduced by 67 +/- 4%, which was also significantly stronger when compared with the individual components. These data provide evidence that cell surface-bound inhibition of the PA and MMP system by the hybrid protein TIMP-1.ATF.BPTI, overexpressed in distant tissues after electroporation-mediated non-viral gene transfer, is a powerful approach to prevent vein graft disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available