4.7 Article

Cardiac remodelling hinders activation of cyclooxygenase-2, diminishing protection by delayed pharmacological preconditioning:: role of HIF1α and CREB

Journal

CARDIOVASCULAR RESEARCH
Volume 78, Issue 1, Pages 98-107

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvn016

Keywords

remodelling; preconditioning; ischaemia/reperfusion; cyclooxygenase; NSAIDs

Ask authors/readers for more resources

Aims We tested whether delayed pharmacologic preconditioning elicited by isoflurane is protective in infarct-remodelled hearts. Methods and results Mate Wistar rats were treated with the preconditioning drug isoflurane 6 weeks after permanent ligation of the left anterior descending coronary artery. Twenty-four and 48 h later, hearts were perfused on the Langendorff system and treated with cyclooxygenase-2 or 12-lipoxygenase inhibitors before exposure to 40 min of ischaemia followed by 90 min of reperfusion. Infarct size was determined by triphenyttetrazolium chloride staining and lactate dehydrogenase release. Cyclooxygenase-2 expression and activity were measured by Western blotting and colorimetric assay. Nuclear translocation of cyclooxygenase-2-inducing transcription factors HIF1 alpha, CREB, STAT3, and NF kappa B was determined. Post-infarct, remodelled hearts exhibit alterations in cellular signalling, time course and extent of isoflurane-induced late protection. While remodelled, preconditioned hearts exhibited protection exclusively at 24 h, healthy hearts showed sustained protection for up to 48 h, which correlated with cyctooxygenase-2 protein expression and enzymatic activity. The cyclooxygenase-2 inhibitors celecoxib and NS-398, but not the 12-lipoxygenase inhibitor cinnamyl-3,4-dihydroxycyanocinnamate, abolished delayed protection in both healthy and remodelled hearts, identifying cyclooxygenase-2 as a key mediator of late protection in both models. Isoflurane induced nuclear translocation of HIF1 alpha in all hearts, but CREB was exclusively activated in healthy but not remodelled myocardium, which expressed higher levels of the CREB antagonist ICER. Delayed protection by isoflurane in remodelled hearts was more vulnerable to inhibition by celecoxib. Conclusion Isoflurane failed to mobilize cyclooxygenase-2-inducing CREB in ICER-overexpressing, remodelled hearts, which was associated with a shortening of the second window of protection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available