4.4 Article

A First-Passage-Time Theory for Search and Capture of Chromosomes by Microtubules in Mitosis

Journal

BULLETIN OF MATHEMATICAL BIOLOGY
Volume 73, Issue 10, Pages 2483-2506

Publisher

SPRINGER
DOI: 10.1007/s11538-011-9633-9

Keywords

Microtubule; Chromosome capture; Metaphase spindle; Green's functions

Funding

  1. Department of Science and Technology, Government of India
  2. Centre for Industrial Consultancy and Sponsored Research, IIT Madras

Ask authors/readers for more resources

The mitotic spindle is an important intermediate structure in eukaryotic cell division, in which each of a pair of duplicated chromosomes is attached through microtubules to centrosomal bodies located close to the two poles of the dividing cell. Several mechanisms are at work toward the formation of the spindle, one of which is the 'capture' of chromosome pairs, held together by kinetochores, by randomly searching microtubules. Although the entire cell cycle can be up to 24 hours long, the mitotic phase typically takes only less than an hour. How does the cell keep the duration of mitosis within this limit? Previous theoretical studies have suggested that the chromosome search and capture is optimized by tuning the microtubule dynamic parameters to minimize the search time. In this paper, we examine this conjecture. We compute the mean search time for a single target by microtubules from a single nucleating site, using a systematic and rigorous theoretical approach, for arbitrary kinetic parameters. The result is extended to multiple targets and nucleating sites by physical arguments. Estimates of mitotic time scales are then obtained for different cells using experimental data. In yeast and mammalian cells, the observed changes in microtubule kinetics between interphase and mitosis are beneficial in reducing the search time. In Xenopus extracts, by contrast, the opposite effect is observed, in agreement with the current understanding that large cells use additional mechanisms to regulate the duration of the mitotic phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available