4.6 Article

Real-time mapping of earthquake-induced landslides

Journal

BULLETIN OF EARTHQUAKE ENGINEERING
Volume 9, Issue 4, Pages 955-973

Publisher

SPRINGER
DOI: 10.1007/s10518-010-9234-2

Keywords

Slidemaps; Sliding block analysis; Earthquakes; Shakemaps; Natural slopes; Italy

Funding

  1. European Commission [036935]

Ask authors/readers for more resources

Rigid sliding block analysis is a common analytical procedure used to predict the potential for earthquake-induced landslides for natural slopes. Currently, predictive models provide the expected level of displacement as a function of the characteristics of the slope (e.g., geometry, strength, yield acceleration) and the characteristics of earthquake shaking (e.g., peak ground acceleration, peak ground velocity). These predictive models are used for developing seismic landslide hazard maps which identify zones with risk of earthquake-induced landslides. Alternatively, these models can be combined with Shakemaps to generate near-real-time Slidemaps which could be used, among others, as a tool in disaster management. Shakemaps (a publicly available free service of the United States Geological Survey, USGS) provide near-real-time ground motion conditions during the time of an earthquake event. The ground motion parameters provided by a Shakemap are very useful for the development of Slidemaps. By providing ground motion parameters from an actual earthquake event, Shakemaps also serve as a tool to decouple the uncertainty of the ground motion in sliding displacements prediction. Campania region in Italy is studied for assessing the applicability of using Shakemaps for regional landslide-risk assessment. This region is selected based on the availability of soil shear strength parameters and the proximity to the 1980 Irpina (M (w) = 6.9) Earthquake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available