4.7 Article

β-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 161, Issue 1, Pages 150-161

Publisher

WILEY
DOI: 10.1111/j.1476-5381.2010.00875.x

Keywords

AT(1) receptor; beta-arrestins; fusion proteins; ternary complex; high-affinity conformation

Funding

  1. Danish National Research Foundation
  2. Koebmand i Odense Johan og Hanne Weimann f. Seedorffs legat, Aase og Ejnar Danielsens Foundation
  3. Novo Nordisk Foundation
  4. Danish Heart Foundation
  5. Augustinus Foundation

Ask authors/readers for more resources

BACKGROUND AND PURPOSE The angiotensin II type 1 (AT(1)) receptor belongs to family A of 7 transmembrane (7TM) receptors. The receptor has important roles in the cardiovascular system and is commonly used as a drug target in cardiovascular diseases. Interaction of 7TM receptors with G proteins or beta-arrestins often induces higher binding affinity for agonists. Here, we examined interactions between AT(1A) receptors and beta-arrestins to look for differences between the AT(1A) receptor interaction with beta-arrestin1 and beta-arrestin2. EXPERIMENTAL APPROACH Ligand-induced interaction between AT(1A) receptors and beta-arrestins was measured by Bioluminescence Resonance Energy Transfer 2. AT(1A)-beta-arrestin1 and AT(1A)-beta-arrestin2 fusion proteins were cloned and tested for differences using immunocytochemistry, inositol phosphate hydrolysis and competition radioligand binding. KEY RESULTS Bioluminescence Resonance Energy Transfer 2 analysis showed that beta-arrestin1 and 2 were recruited to AT(1A) receptors with similar ligand potencies and efficacies. The AT(1A)-beta-arrestin fusion proteins showed attenuated G protein signalling and increased agonist binding affinity, while antagonist affinity was unchanged. Importantly, larger agonist affinity shifts were observed for AT(1A)-beta-arrestin2 than for AT(1A)-beta-arrestin1. CONCLUSION AND IMPLICATIONS beta-Arrestin1 and 2 are recruited to AT(1A) receptors with similar ligand pharmacology and stabilize AT(1A) receptors in distinct high-affinity conformations. However, beta-arrestin2 induces a receptor conformation with a higher agonist-binding affinity than beta-arrestin1. Thus, this study demonstrates that beta-arrestins interact with AT(1A) receptors in different ways and suggest that AT(1) receptor biased agonists with the ability to recruit either of the beta-arrestins selectively, would be possible to design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available