4.7 Article

Novel type of Gq/11 protein-coupled neurosteroid receptor sensitive to endocrine disrupting chemicals in mast cell line (RBL-2H3)

Journal

BRITISH JOURNAL OF PHARMACOLOGY
Volume 145, Issue 4, Pages 545-550

Publisher

WILEY
DOI: 10.1038/sj.bjp.0706213

Keywords

neurosteroid; endocrine; disrupting chemical; GPCR; mast cell; beta-hexosaminidase release

Ask authors/readers for more resources

1 Agonistic neurosteroids, including pregnenolone, dehydroepiandrosterone and its sulfate (DHEAS), caused rapid degranulation in measurements of beta-hexosaminidase (beta-HEX) release from a mast cell line, RBL-2H3. This degranulation was blocked by BSA-conjugated progesterone (PROG-BSA) or 17 beta-estradiol, both of which are antagonistic neurosteroids. 2 DHEAS-induced beta-HEX release was blocked by U-73122 or xestospongin C, but not by PTX or EGTA. DHEAS-induced beta-HEX release was also abolished by G(q/11)-AS, but not by G(q/11)-MS. Pharmacological analyses revealed that the neurosteroids stimulated a putative membrane receptor through activation of the novel G(q/11) and phospholipase C. 3 While representative endocrine-disrupting chemicals (EDCs) did not show any degranulation or nocifensive actions by themselves, they blocked the DHEAS-induced degranulation. 4 The binding of a PROG-BSA-fluorescein isothiocyanate conjugate (PROG-BSA-FITC) to cells was inhibited by neurosteroids and EDCs. 5 In the algogenic-induced biting and licking responses test, DHEAS caused agonistic nocifensive actions in a dose-dependent manner between 1 and 10 fmol (i.pl.). DHEAS-induced nocifensive actions were abolished by PROG-BSA or nonylphenol. 6 Taken together, these results suggest that a G(q/11)-coupled neurosteroid receptor may regulate the neuroimmunological activity related to sensory stimulation and that some EDCs have antagonistic actions for this receptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available