4.8 Article

Functionalized nanoscale β-1,3-glucan to improve Her2+breast cancer therapy: In vitro and in vivo study

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 202, Issue -, Pages 49-56

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2015.01.014

Keywords

beta-1,3-glucan; Doxorubicin; Drug delivery; Trastuzumab; Active targeting

Funding

  1. Tarbiat Modares University
  2. Nanotechnology Research Centre of Tehran University of Medical Sciences

Ask authors/readers for more resources

We fabricated a targeted delivery system for doxorubicin (Dox) using beta-1,3-glucan (Glu) as a carrier and decorated by trastuzumab antibody having the status of targeting agent against Her2 + breast tumors. Glu-Dox conjugates were also functionalized with polyethylenimine (PEI) intended for increasing specific cellular uptake of prepared nanoparticles. The self-assembled nanoparticles were prepared through conjugation of Dox-[Glu-Dox-] using succinic anhydride (Sa) in place of a linker. Nanoparticles had spherical morphology with positive zeta potential. In-vitro cell viability assay on two breast cancer cell lines demonstrated acceptable toxicity against tested cell lines. Confocal microscopic images demonstrated the remarkable cytoplasmic uptake of the nanoparticles in Her2-overexpressing 4T1 cells. A controlled release of Dox from Glu-Dox nanoparticles was investigated. In-vivo studies were performed on female Balb/C mice. The volume of the induced tumors was calculated following intravenous administration of nanoparticles. The tumor volume diminished efficiently and more rapidly after administration of nanoparticles containing Dox. Based on survival results, the formulation of Dox targeted nanoparticles appeared very promising for the treatment of tumors. It could be concluded that Glu-Dox targeted nanoparticles have potential advantages for delivering anticancer drugs to the target tissue. (C) 2015 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available