4.4 Article

Turbulent Transport of Momentum and Scalars Above an Urban Canopy

Journal

BOUNDARY-LAYER METEOROLOGY
Volume 150, Issue 3, Pages 485-511

Publisher

SPRINGER
DOI: 10.1007/s10546-013-9877-z

Keywords

Ejections and sweeps; Quadrant analysis; Reynolds analogy; Scalar similarity; Transport efficiency; Urban canopy

Funding

  1. National Key Basic Research Grogram [2010CB428502, 2012CB417203]
  2. China Meteorological Administration [GYHY201006024]
  3. CAS [XDA05110101]
  4. National Natural Science Foundation of China [41275022]
  5. United States National Science Foundation [CBET-1058027]
  6. Div Of Chem, Bioeng, Env, & Transp Sys
  7. Directorate For Engineering [1058027] Funding Source: National Science Foundation

Ask authors/readers for more resources

Turbulent transport of momentum and scalars over an urban canopy is investigated using the quadrant analysis technique. High-frequency measurements are available at three levels above the urban canopy (47, 140 and 280 m). The characteristics of coherent ejection-sweep motions (flux contributions and time fractions) at the three levels are analyzed, particularly focusing on the difference between ejections and sweeps, the dissimilarity between momentum and scalars, and the dissimilarity between the different scalars (i.e., temperature, water vapour and . It is found that ejections dominate momentum and scalar transfer at all three levels under unstable conditions, while sweeps are the dominant eddy motions for transporting momentum and scalars in the urban roughness sublayer under neutral and stable conditions. The flux contributions and time fractions of ejections and sweeps can be adequately captured by assuming a Gaussian joint probability density function for flow variables. However, the inequality of flux contributions from ejections and sweeps is more accurately reproduced by the third-order cumulant expansion method (CEM). The incomplete cumulant expansion method (ICEM) also works well except for at 47 m where the skewness of fluctuations is significantly larger than that for vertical velocity. The dissimilarity between momentum and scalar transfers is linked to the dissimilarity in the characteristics of ejection-sweep motions and is further quantified by measures of transport efficiencies. Atmospheric stability is the controlling factor for the transport efficiencies of momentum and heat, and fitted functions from the literature describe their behaviour fairly accurately. However, transport efficiencies of water vapour and are less affected by the atmospheric stability. The dissimilarity among the three scalars examined in this study is linked to the active role of temperature and to the surface heterogeneity effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available