4.7 Article

CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche

Journal

BLOOD
Volume 124, Issue 4, Pages 519-529

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2014-03-565721

Keywords

-

Categories

Funding

  1. National Heart, Lung, and Blood Institute [HL55716]
  2. Indiana Center for Excellence in Molecular Hematology (National Institute of Diabetes and Digestive and Kidney Diseases) [P30 DK090948]
  3. National Cancer Institute [P30 CA082709]
  4. National Institute of Diabetes and Digestive and Kidney Diseases [P01 DK090948]

Ask authors/readers for more resources

We previously showed that immature CD166(+) osteoblasts (OB) promote hematopoietic stem cell (HSC) function. Here, we demonstrate that CD166 is a functional HSC marker that identifies both murine and human long-term repopulating cells. Both murine LSKCD48(-)CD166(+)CD150(+) and LSKCD48(-)CD166(+)CD150(+)CD9(+) cells, as well as human Lin(-)CD34(+)CD38(-)CD49f(+)CD166(+) cells sustained significantly higher levels of chimerism in primary and secondary recipients than CD166 2 cells. CD166(-/-) knockout (KO) LSK cells engrafted poorly in wild-type (WT) recipients and KO bone marrow cells failed to radioprotect lethally irradiated WT recipients. CD166(-/-) hosts supported short-term, but not long-term WT HSC engraftment, confirming that loss of CD166 is detrimental to the competence of the hematopoietic niche. CD166(-/-) mice were significantly more sensitive to hematopoietic stress. Marrow-homed transplanted WT hematopoietic cells lodged closer to the recipient endosteum than CD166(-/-) cells, suggesting that HSC-OB homophilic CD166 interactions are critical for HSC engraftment. STAT3 has 3 binding sites on the CD166 promoter and STAT3 inhibition reduced CD166 expression, suggesting that both CD166 and STAT3 may be functionally coupled and involved in HSC competence. These studies illustrate the significance of CD166 in the identification and engraftment of HSC and in HSC-niche interactions, and suggest that CD166 expression can be modulated to enhance HSC function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available