4.7 Article

Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors

Journal

BLOOD
Volume 124, Issue 26, Pages 3924-3931

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2014-05-576652

Keywords

-

Categories

Funding

  1. Belgian Program on Interuniversity Poles of Attraction
  2. Belgian State, Prime Minister's Office, Science Policy Programming [IAP-P7/39, IAP-P7/43]
  3. Actions de Recherche Concertees of the Communaute Francaise de Belgique [ARC10/15-027, ARC09/14-021]
  4. Fondation Contre le Cancer, the Foundation Salus Sanguinis, Belgium
  5. Fonds pour la formation a la recherche dans l'industrie et l'agriculture (FRIA)
  6. Operation Televie, Belgium
  7. Associazione Italiana per la Ricerca sul Cancro (AIRC) [IG8803]

Ask authors/readers for more resources

The acquisition of growth signal self-sufficiency is 1 of the hallmarks of cancer. We previously reported that the murine interleukin-9-dependent TS1 cell line gives rise to growth factor-independent clones with constitutive activation of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. Here, we show that this transforming event results from activating mutations either in JAK1, JAK3, or in both kinases. Transient and stable expression of JAK1 and/or JAK3 mutants showed that each mutant induces STAT activation and that their coexpression further increases this activation. The proliferation of growth factor-independent TS1 clones can be efficiently blocked by JAK inhibitors such as ruxolitinib or CMP6 in short-term assays. However, resistant clones occur upon long-term culture in the presence of inhibitors. Surprisingly, resistance to CMP6 was not caused by the acquisition of secondary mutations in the adenosine triphosphate-binding pocket of the JAK mutant. Indeed, cells that originally showed a JAK1-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK3, whereas cells that originally showed a JAK3-activating mutation became resistant to inhibitors by acquiring another activating mutation in JAK1. These observations underline the cooperation between JAK1 and JAK3 mutants in T-cell transformation and represent a new mechanism of acquisition of resistance against JAK inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available