4.5 Article

A reconstructed metastasis model to recapitulate the metastatic spread in vitro

Journal

BIOTECHNOLOGY JOURNAL
Volume 9, Issue 9, Pages 1129-1139

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201400121

Keywords

Breast cancer; Extracellular matrix; Metastasis; Solid tumors; Tumor microenvironment

Funding

  1. Ralph W. and Grace M. Showalter Trust
  2. PRF (Purdue Research Foundation)
  3. National Institutes of Health, National Cancer Institute [R25CA128770]
  4. Cancer Prevention Internship Program

Ask authors/readers for more resources

Metastasis remains a leading cause of morbidity and mortality from solid tumors. Lack of comprehensive systems to study the progression of metastasis contributes to the low success of treatment. We developed a novel three-dimensional in vitro reconstructed metastasis (rMet) model that incorporates extracellular matrix (ECM) elements characteristic of the primary (breast, prostate, or lung) and metastatic (bone marrow, BM) sites. A cytokine-rich liquid interphase separates the primary and distant sites, further recapitulating circulation. Similar to main events underlying the metastatic cascade, the rMet model fractionated human tumor cell lines into sub-populations with distinct invasive and migratory abilities: (i) a primary tumor-like fraction mainly consisting of non-migratory spheroids; (ii) an invasive fraction that invaded through the primary tumor ECM, but failed to acquire anchorage-independence and reach the BM; and (iii) a highly migratory BM-colonizing population that invaded the primary ECM, survived in the circulation-like media, and successfully invaded and proliferated within BM ECM. BM-colonizing fractions successfully established metastatic bone lesions in vivo, whereas the tumor-like spheroids failed to engraft the bones, showing the ability of the rMet model to faithfully select for highly aggressive sub-populations with a propensity to colonize a metastatic site. By applying the rMet model to study real-time ECM remodeling, we show that tumor cells secrete collagenolytic enzymes for invading the primary site ECM but not for entering the BM ECM, indicating possible differences in ECM remodeling mechanisms at primary tumor versus metastatic sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available