4.6 Article

In silico multi-scale model of transport and dynamic seeding in a bone tissue engineering perfusion bioreactor

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 110, Issue 4, Pages 1221-1230

Publisher

WILEY-BLACKWELL
DOI: 10.1002/bit.24777

Keywords

lattice Boltzmann; mathematical model; perfusion bioreactor; bone tissue engineering; wall shear stress

Funding

  1. BBSRC [BB/F013744/1, BB/F013892/1]
  2. Biotechnology and Biological Sciences Research Council [BB/F013892/1, BB/F013744/1, BB/F013892/2] Funding Source: researchfish
  3. BBSRC [BB/F013892/2, BB/F013892/1, BB/F013744/1] Funding Source: UKRI

Ask authors/readers for more resources

Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly-L-lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre-requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection-diffusion-attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large-scale bioreactors. Biotechnol. Bioeng. 2013; 110: 12211230. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available