4.8 Article

Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels

Journal

BIOSENSORS & BIOELECTRONICS
Volume 27, Issue 1, Pages 18-24

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2011.05.022

Keywords

Electrochemiluminescence; Immunosensor; N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticle; Amplification; Human cardiac troponin I

Funding

  1. National Natural Science Foundation of P.R. China [20625517, 20573101, 21075115]
  2. Fundamental Research Funds for the Central Universities [WK2060190007]
  3. Chinese Academy of Sciences

Ask authors/readers for more resources

A novel nanoparticle-based electrochemiluminescence (ECL) immunosensor was designed for highly sensitive and selective detection of human cardiac troponin I (cTnI), an important Acute Myocardial Infarction (AMI)-related biomarker, by using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanopartides (ABEI-AuNPs) as labels. ABEI-AuNPs were successfully synthesized via a simple seed growth method. A great number of luminescence molecules ABEI as stabilizers were coated on the surface of the AuNPs, which exhibited better ECL activities than previously reported luminol functionalized gold nanoparticles. ABEI-AuNPs were used as new ECL labels to build bio-probes by conjugation with secondary antibodies, which showed good ECL activity, immunological activity, and stability. Another kind of AuNPs functionalized with streptavidin was modified on the electrode surface for biotinylated antibodies capture through the specific interaction of biotin/streptavidin and enhancing the electrical connectivity. By combining with the novel ECL labels and amplification of AuNPs and biotin-streptavidin system, a high sensitive sandwich-type electrochemiluminescence immunoassay was developed for detecting human cTnI with a low detection limit of 2 pg/mL The immunosensor showed good precision, acceptable stability and reproducibility and could be used for the detection of cTnI in real samples, which was of great potential application in clinical analysis. Importantly, the sensitive detection would have far more diagnostic value than would absolute measurements during the early stage of AMI. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available