4.8 Article

Ternary mixed monolayers for simultaneous DNA orientation control and surface passivation for label free DNA hybridization electrochemical sensing

Journal

BIOSENSORS & BIOELECTRONICS
Volume 25, Issue 9, Pages 2129-2134

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2010.02.019

Keywords

Label free; DNA hybridization; Electrochemical; Ternary layer; Thiol mixed monolayers

Funding

  1. Korea government (MEST) [2009-0083707]

Ask authors/readers for more resources

Target recognizing ternary mixed monolayer is constructed by simple sequential adsorption of thiol caped single stranded DNA (HS-ssDNA), 6-mercapto-1-hexanol (MCH) and 3-mercaptopropionic acid (MPA) diluents (abbreviated as HS-ssDNA/MPA/MCH) and applied for detection of DNA hybridization sequence by electrochemical method. The method is more reliable and reproducible on both conventional wire electrode and 100 nm scale gold-coated silicon chips. Detection limit of 10 pM is observed constantly on all types of electrodes. This ternary layer approach provides 60-80% discrimination effect between the hybridized and un-hybridized surfaces compared to the binary mixed monolayers HS-ssDNA/MCH and HS-ssDNA/MPA that showed 20-30% only. Characterization by impedance spectroscopy, X-ray photoelectron spectroscopy and surface Fourier Transform Infrared (FT-IR) techniques reveals 'head-to-head' anisotropic hydrogen bonding between MPA and MCH diluents that controls the HS-ssDNA orientation and enhancing the electrostatic blockade for K-3[Fe(CN)(6)]. This is the first report characterizing the ternary layer for DNA molecular affinity sensing. Results provided unprecedented insight onto the label free electrochemical sensing and understanding of the complex sensing mechanism to develop sensors that is more reliable. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available