4.8 Article

Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells

Journal

BIORESOURCE TECHNOLOGY
Volume 128, Issue -, Pages 539-546

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2012.11.011

Keywords

Cobalt leaching; Lithium cobalt oxide; Microbial fuel cell; Cathodic reduction

Funding

  1. National Basic Research Program of China [2011CB936002]
  2. Natural Science Foundation of China [51178077, 21077017]
  3. National Innovation and Enterprise Program for Undergraduates [201210141052]

Ask authors/readers for more resources

Cobalt leaching from lithium cobalt oxide is a promising reduction process for recovery of cobalt and recycle of spent lithium ion batteries, but suffers from consumption of large amount of reductants and energy, and generation of excess secondary polluted sludge. Thus, effective and environmental friendly processes are needed to improve the existing process limitations. Here we reported microbial fuel cells (MFCs) to effectively reduce Co(III) in lithium cobalt oxide with concomitant energy generation. There was a synergetic interaction in MFCs, leading to a more rapid Co(III) leaching at a rate 3.4 times the sum of rates by conventional chemical processes and no-acid controls. External resistor, solid/liquid ratio, solution conductivity, pH and temperature affected system performance. This study provides a new process for recovery of cobalt and recycle of spent lithium ion batteries with concomitant energy generation from MFCs. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Environmental

Improving the Performance of the Lamellar Reduced Graphene Oxide/Molybdenum Sulfide Nanofiltration Membrane through Accelerated Water-Transport Channels and Capacitively Enhanced Charge Density

Jiajian Xing, Haiguang Zhang, Gaoliang Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan

Summary: By incorporating molybdenum sulfide (MoS2) nanosheets and applying external electrical assistance, both the 2D channel and charge density of reduced graphene oxide (rGO) membranes were regulated to enhance water flux and salt rejection. The resulting rGO/MoS2 membranes exhibited expanded nanochannels, resulting in significantly increased water permeance. In addition, the high capacitance and negative potential of the membranes contributed to improved rejection rates for NaCl and Na2SO4 ions. This study provides new insights for the design of membranes with high water flux and salt rejection efficiency.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Multidisciplinary Sciences

Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents

Peike Cao, Xie Quan, Xiaowa Nie, Kun Zhao, Yanming Liu, Shuo Chen, Hongtao Yu, Jingguang G. G. Chen

Summary: The authors report a scalable cobalt single-site catalyst for hydrogen peroxide synthesis at industrial-relevant currents in acidic, neutral or alkaline electrolyte, providing a sustainable alternative to traditional anthraquinone technology.

NATURE COMMUNICATIONS (2023)

Review Chemistry, Multidisciplinary

Carbon nanomaterial-based membranes for water and wastewater treatment under electrochemical assistance

Xinfei Fan, Gaoliang Wei, Xie Quan

Summary: Membrane separation is widely used in water and wastewater treatment due to its cost-effectiveness, ease of operation, and high efficiency. However, current membranes face challenges in balancing selectivity and permeability, as well as dealing with membrane fouling. Recent studies have focused on developing high-performance membranes based on carbon nanomaterials, such as carbon nanotubes and graphene, to improve water and wastewater treatment. These carbon nanomaterial-based membranes demonstrate enhanced permselectivity and fouling resistance under electrochemical assistance, thanks to their good electrical conductivity. This review summarizes the progress in the preparation, mechanisms, and applications of electroconductive nanocarbonaceous membranes for water purification and wastewater treatment, aiming to enhance the fundamental understanding of combining membrane separation and electrochemistry. The review covers methods for preparing electroconductive membranes, such as carbon nanotube membranes and graphene membranes, as well as the underlying mechanisms for the improved permselectivity, antifouling, and regeneration performance achieved through electrochemical processes. The review also discusses practical limitations of membrane/electrochemistry systems and proposes possible solutions.

ENVIRONMENTAL SCIENCE-NANO (2023)

Article Chemistry, Multidisciplinary

Highly crinkled and interconnected N, O and S co-doped carbon nanosheet modified separators for efficient Li-S batteries

Yanan Zhu, Yuanfu Deng, Guohua Chen

Summary: In this study, heteroatom-doped carbon nanosheets were successfully synthesized using crosslinked triazine frameworks and g-C3N4 nanosheets as a template. The nanosheets exhibited high crinkling and interconnectivity, along with a large surface area (1060 m(2) g(-1)) and pore volume (2.14 cm(3) g(-1)), with highly dispersed N, O and S. When coated on commercial Celgard separators, the modified batteries showed low self-discharge and improved rate performance, even at 4 C. Excellent cycling performances were achieved at different rates, with an initial discharge capacity of 1240 mA h g(-1) and a capacity decay of only 0.059% per cycle for over 1000 cycles at 0.5 C.

MATERIALS CHEMISTRY FRONTIERS (2023)

Article Chemistry, Physical

Oxygen vacancies-driven nonradical oxidation pathway of catalytic ozonation for efficient water decontamination

Lanlan Liang, Peike Cao, Xin Qin, Shuai Wu, Haokun Bai, Shuo Chen, Hongtao Yu, Yan Su, Xie Quan

Summary: Developing efficient and interference-tolerant catalysts for practical use in catalytic ozonation process is challenging. In this study, a surface Vo-rich catalyst was prepared by doping Co into zinc ferrite spinel, showing efficient mineralization of recalcitrant organic pollutants. The removal of contaminants was mainly attributed to nonradical-based oxygen species, *O, rather than traditional hydroxyl radicals, •OH. The Vo-driven nonradical catalysis exhibited high resistance to coexisting ions and excellent performance in actual wastewater treatment, providing a novel strategy for efficient mineralization of pollutants in complicated water matrices.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Engineering, Environmental

Boosting the selectivity and efficiency of nitrate reduction to ammonia with a single-atom Cu electrocatalyst

Xueyang Zhao, Qin Geng, Fan Dong, Kun Zhao, Shuo Chen, Hongtao Yu, Xie Quan

Summary: Electrochemically reducing nitrate to ammonia is an efficient method to address nitrate pollution. However, controlling the selectivity and kinetics of ammonia production remains a challenge. In this study, a single-atom Cu catalyst was developed for selective and efficient nitrate reduction, achieving high Faradic efficiency and ammonia selectivity. DFT calculations revealed the underlying mechanism, demonstrating the superiority of the single-atom Cu catalyst over Cu nanoparticle catalyst. This research provides a strategy for designing electrocatalysts for efficient and selective ammonia production via nitrate reduction.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro- Fenton Oxidation

Xin Qin, Peike Cao, Xie Quan, Kun Zhao, Shuo Chen, Hongtao Yu, Yan Su

Summary: In this study, a dual-atomic-site catalyst (CoFe DAC) was proposed to cooperatively catalyze middotOH electrogeneration. The CoFe DAC showed higher middotOH production rate compared to single-site catalysts, and it was more energy-efficient for coking wastewater treatment.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Engineering, Environmental

Electrochemical Opening of Impermeable Nanochannels in Laminar Graphene Membranes for Ultrafast Nanofiltration

Gaoliang Wei, Lei Du, Haiguang Zhang, Jiajian Xing, Shuo Chen, Xie Quan

Summary: In this study, it was found that electrochemical treatment can expand the restacked regions of reduced graphene oxide (rGO) membranes, leading to the formation of ultrafast water transport nanochannels. The expansion is driven by hydrogen bond interactions between water molecules and electrochemically produced hydroxyl groups on the edges of rGO nanosheets. The treated rGO membranes exhibit a permeance 2 orders of magnitude higher than pristine rGO membranes and about 3 times higher than graphene oxide membranes. Additionally, the rGO membranes also show higher ionic/molecular rejection performance due to their smaller average pore size.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Multidisciplinary Sciences

Electroregulation of graphene-nanofluid interactions to coenhance water permeation and ion rejection in vertical graphene membranes

Hai-Guang Zhang, Xie Quan, Lei Du, Gao-Liang Wei, Shuo Chen, Hong-Tao Yu, Ying-Chao Dong

Summary: Researchers propose an electropolarization strategy using vertically aligned reduced graphene oxide (VARGO) membrane to regulate interfacial hydrogen-bond and electrostatic interactions, achieving high water permeation and ion rejection performance.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2023)

Review Chemistry, Multidisciplinary

Structural Understanding for High-Voltage Stabilization of Lithium Cobalt Oxide

Cong Lin, Jianyuan Li, Zu-Wei Yin, Weiyuan Huang, Qinghe Zhao, Qingsong Weng, Qiang Liu, Junliang Sun, Guohua Chen, Feng Pan

Summary: This review focuses on the long-term research of the structural understanding of LiCoO2 cathode, uncovering various structural issues and stabilization strategies at different scales. It emphasizes the importance of in-depth knowledge of LiCoO2 structure for future stabilization efforts.

ADVANCED MATERIALS (2023)

Article Engineering, Environmental

Electromotive force induced by dynamic magnetic field electrically polarized sediment to aggravate methane emission

Qilin Yu, Haohao Mao, Zhiqiang Zhao, Xie Quan, Yaobin Zhang

Summary: As a major driver of global methane production, methanogens are exposed to an environment filled with dynamic electromagnetic waves, which may induce electromotive force (EMF) to potentially influence methanogen metabolism. This study found that exposure to a dynamic magnetic field increased biogas production through induced EMF. The methane emissions from sediments increased by 41.71% when exposed to a dynamic magnetic field with an intensity of 0.20 to 0.40 mT. The EMF accelerated the respiration of methanogens and bacteria, leading to enhanced microbial metabolism.

WATER RESEARCH (2023)

Article Chemistry, Multidisciplinary

Electronic Tuning of SnO2 by rGO Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution

Muhammad Irfan Ahmad, Shuo Chen, Hongtao Yu, Xie Quan

Summary: This study demonstrates the successful production of H2O2 by introducing reduced graphene oxide (rGO) into SnO2, which enhanced light absorption and reduced the energy band gap. Among different concentrations of rGO, 0.5wt% rGO-SnO2 showed the highest H2O2 yield. The findings provide valuable guidance for designing efficient photocatalysts for H2O2 generation.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Engineering, Environmental

Molten Salt Intercalated MXene Membrane for d-Spacing Stabilization under Electrochemical Assistance

Chengyu Yuan, Yuxin Li, Lulu Qian, Jiajian Xing, Xu Wang, Haiguang Zhang, Lei Du, Gaoliang Wei, Shuo Chen, Xie Quan

Summary: This study presents a molten salt intercalation method for the fabrication of an Al3+-intercalated MXene membrane with good antiswelling ability. The intercalated membrane shows significant increase in the Al-O group and Al content, while in situ XRD tests confirm the stability of d-spacing with Al3+ intercalation. The membranes demonstrate excellent separation efficacy for organic dyes and antibiotics with rejection rates exceeding 90%.

ACS ES&T ENGINEERING (2023)

Article Engineering, Environmental

Enhanced nitrogen removal in the upgrading of municipal wastewater treatment plants by using zero-valent iron-modified biofilm carriers and clinoptilolite-modified biofilm carriers

Yanping Shi, Tao Liu, Xie Quan, Shuo Chen, Hongtao Yu, Wuzhe Quan

Summary: A municipal WWTP upgraded its process to A2O-IFFAS by filling ZVI-modified biofilm carriers into anoxic bioreactors and clinoptilolite-modified biofilm carriers into aerobic bioreactors. The upgraded process achieved high nitrogen removal efficiency and met the discharge standard requirements.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Engineering, Environmental

Design Principles and Strategies of Photocatalytic H2O2 Production from O2 Reduction

Shuai Wu, Xie Quan

Summary: This article introduces the basic mechanism of photocatalytic H2O2 production from O2 reduction and proposes universal strategies and design principles to enhance the performance of photocatalytic H2O2 production. The article also presents the prospects and suggestions for the future development of photocatalytic H2O2 production.

ACS ES&T ENGINEERING (2022)

Article Agricultural Engineering

Carbamazepine facilitated horizontal transfer of antibiotic resistance genes by enhancing microbial communication and aggregation

Yinping Xiang, Meiying Jia, Rui Xu, Jialu Xu, Lele He, Haihao Peng, Weimin Sun, Dongbo Wang, Weiping Xiong, Zhaohui Yang

Summary: This study investigated the impact of the non-antibiotic pharmaceutical carbamazepine on antibiotic resistance genes (ARGs) during anaerobic digestion. The results showed that carbamazepine induced the enrichment of ARGs and increased the abundance of bacteria carrying these genes. It also facilitated microbial aggregation and intercellular communication, leading to an increased frequency of ARGs transmission. Moreover, carbamazepine promoted the acquisition of ARGs by pathogens and elevated their overall abundance.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

A review of microbial responses to biochar addition in anaerobic digestion system: Community, cellular and genetic level findings

Weixin Zhao, Tianyi Hu, Hao Ma, Dan Li, Qingliang Zhao, Junqiu Jiang, Liangliang Wei

Summary: This review summarizes the effects and potential mechanisms of biochar on microbial behavior in AD systems. The addition of biochar has been found to promote microbial colonization, alleviate stress, provide nutrients, and enhance enzyme activity. Future research directions include targeted design of biochar, in-depth study of microbial mechanisms, and improved models.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Advances in nitrogen removal and recovery technologies from reject water: Economic and environmental perspectives

Christina Karmann, Anna Magrova, Pavel Jenicek, Jan Bartacek, Vojtech Kouba

Summary: This review assesses nitrogen removal technologies in reject water treatment, highlighting the differences in environmental impacts and economic benefits. Partial nitritation-anammox shows potential for economic benefits and positive environmental outcomes when operated and controlled properly.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Layered double hydroxide loaded pinecone biochar as adsorbent for heavy metals and phosphate ion removal from water

Wei-Hao Huang, Ying-Ju Chang, Duu-Jong Lee

Summary: This study modified pinecone biochar with layered double hydroxide (LDH) to enhance its adsorption capacity for heavy metal and phosphate ions. The LDH-biochar showed significantly improved adsorption capacities for Pb2+ and phosphate, and a slight increase for Cu2+ and Co2+. The LDH layer enhanced the adsorption through various mechanisms.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Machine learning-based prediction of methane production from lignocellulosic wastes

Chao Song, Fanfan Cai, Shuang Yang, Ligong Wang, Guangqing Liu, Chang Chen

Summary: This paper developed a machine learning model to predict the biochemical methane potential during anaerobic digestion. Model analysis identified lignin content, organic loading, and nitrogen content as key attributes for methane production prediction. For feedstocks with high cellulose content, early methane production is lower but can be improved by prolonging digestion time. Moreover, lignin content exceeding a certain value significantly inhibits methane production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource

Sang Min Lee, Ju Young Lee, Ji-Sook Hahn, Seung-Ho Baek

Summary: This study successfully developed an efficient platform strain using Yarrowia lipolytica for the bioconversion of renewable resources into adipic acid, achieving a remarkable increase in production level.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Synergies of pH-induced calcium phosphate precipitation and magnetic separation for energy-efficient harvesting of freshwater microalgae

Sefkan Kendir, Matthias Franzreb

Summary: This study presents a novel approach using magnetic separation to efficiently harvest freshwater microalgae, Chlorella vulgaris. By combining pH-induced calcium phosphate precipitation with cheap natural magnetite microparticles, harvesting efficiencies up to 98% were achieved in the model medium.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Solvothermal liquefaction of orange peels into biocrude: An experimental investigation of biocrude yield and energy compositional dependency on process variables

Ishaq Kariim, Ji-Yeon Park, Wajahat Waheed Kazmi, Hulda Swai, In-Gu Lee, Thomas Kivevele

Summary: The impact of reaction temperature, residence time, and ethanol: acetone on the energy compositions and yield enhancement of biocrudes was investigated. The results showed that under appropriate conditions, biocrudes with high energy and low oxygen content can be obtained, indicating a high potential for utilization.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Enhancing nitrogen removal performance through intermittent aeration in continuous plug-flow anaerobic/aerobic/anoxic process treating low-strength municipal sewage

Xiyue Zhang, Xiyao Li, Liang Zhang, Yongzhen Peng

Summary: Intermittent aeration is an innovative approach to enhance nitrogen removal in low carbon-to-nitrogen ratio municipal sewage, providing an efficient strategy for the continuous plug-flow AOA process.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Mechanism of magnetite-assisted aerobic composting on the nitrogen cycle in pig manure

Xu Yang, Mahmoud Mazarji, Mengtong Li, Aohua Li, Ronghua Li, Zengqiang Zhang, Junting Pan

Summary: This study investigated the impact of magnetite on the nitrogen cycle of pig manure biostabilisation. The addition of magnetite increased N2O emissions and decreased NH3 emissions during composting. It also increased the total nitrogen content but should be considered for its significant increase in N2O emissions in engineering practice.

BIORESOURCE TECHNOLOGY (2024)

Review Agricultural Engineering

Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies

Ty Shitanaka, Haylee Fujioka, Muzammil Khan, Manpreet Kaur, Zhi-Yan Du, Samir Kumar Khanal

Summary: The market value of microalgae has exponentially increased in the past two decades, thanks to their applications in various industries. However, the supply of high-value microalgal bioproducts is limited due to several factors, and strategies are being explored to overcome these limitations and improve microalgae production, thus increasing the availability of algal-derived bioproducts in the market.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Efficient supply with carbon dioxide from flue gas during large scale production of microalgae: A novel approach for bioenergy facades

Martin Kerner, Thorsten Wolff, Torsten Brinkmann

Summary: The efficiency of using enriched CO2 from flue gas for large-scale production of green microalgae has been studied. The results show that the use of membrane devices and static mixers can effectively improve the CO2 recovery rate and maintain the suitable pH and temperature during cultivation, achieving a more economical and sustainable microalgae production.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation

Rui Ma, Ji Li, Rd Tyagi, Xiaolei Zhang

Summary: This review summarizes the microorganisms capable of using CO2 and CH4 to produce PHAs, illustrating the production process, factors influencing it, and discussing optimization techniques. It identifies the challenges and future prospects for developing economically viable PHAs production using GHGs as a carbon source.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Contribution of zeolite to nitrogen retention in chicken manure and straw compost: Reduction of NH3 and N2O emissions and increase of nitrate

Bing Wang, Peng Zhang, Xu Guo, Xu Bao, Junjie Tian, Guomin Li, Jian Zhang

Summary: The addition of zeolite in the co-composting of chicken manure and straw significantly reduced the emissions of ammonia and N2O, and increased the nitrate content. Zeolite also promoted the abundance of nitrification genes and inhibited the expression of denitrification genes.

BIORESOURCE TECHNOLOGY (2024)

Article Agricultural Engineering

Exploring advanced phycoremediation strategies for resource recovery from secondary wastewater using a large scale photobioreactor

Rohit Dey, Franziska Ortiz Tena, Song Wang, Josef Martin Messmann, Christian Steinweg, Claudia Thomsen, Clemens Posten, Stefan Leu, Matthias S. Ullrich, Laurenz Thomsen

Summary: This study investigated the operation of a 1000L microalgae-based membrane photobioreactor system for continuous secondary wastewater treatment. The research focused on a green microalgae strain called Desmodesmus sp. The study aimed to understand key trends and optimization strategies by conducting experiments in both summer and winter seasons. The findings showed that maintaining low cell concentrations during periods of light inhibition was beneficial for nutrient uptake rates. Effective strategies for enhancing algae-based wastewater treatment included cell mass recycling and adjusting dilution rates based on light availability.

BIORESOURCE TECHNOLOGY (2024)