4.5 Article

Torsion Profiling of Proteins Using Magnetic Particles

Journal

BIOPHYSICAL JOURNAL
Volume 104, Issue 5, Pages 1073-1080

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2013.01.027

Keywords

-

Categories

Ask authors/readers for more resources

We report a method to profile the torsional spring properties of proteins as a function of the angle of rotation. The torque is applied by superparamagnetic particles and has been calibrated while taking account of the magnetization dynamics of the particles. We record and compare the torsional profiles of single Protein G-Immunoglobulin G (IgG) and IgG-IgG complexes, sandwiched between a substrate and a superparamagnetic particle, for torques in the range between 0.5 x 10(3) and 5 x 10(3) pN.nm. Both molecular systems show torsional stiffening for increasing rotation angle, but the elastic and inelastic torsion stiffnesses are remarkably different. We interpret the results in terms of the structural properties of the molecules. The torsion profiling technique opens new dimensions for research on biomolecular characterization and for research on bio-nanomechanical structure-function relationships.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available