Journal
BIOPHYSICAL JOURNAL
Volume 100, Issue 7, Pages 1678-1687Publisher
CELL PRESS
DOI: 10.1016/j.bpj.2011.02.019
Keywords
-
Categories
Funding
- Alberta Heritage Foundation for Medical Research (AHFMR)
- Natural Sciences and Engineering Research Council of Canada
Ask authors/readers for more resources
We investigated the possible role of SP-B proteins in the function of lung surfactant. To this end, lipid monolayers at the air/water interface, bilayers in water, and transformations between them in the presence of SP-B were simulated. The proteins attached bilayers to monolayers, providing close proximity of the reservoirs with the interface. In the attached aggregates, SP-B mediated establishment of the lipid-lined connection similar to the hemifusion stalk. Via this connection, a lipid flow was initiated between the monolayer at the interface and the bilayer in water in a surface-tension-dependent manner. On interface expansion, the flow of lipids to the monolayer restored the surface tension to the equilibrium spreading value. SP-B induced formation of bilayer folds from the monolayer at positive surface tensions below the equilibrium. In the absence of proteins, lipid monolayers were stable at these conditions. Fold nucleation was initiated by SP-B from the liquid-expanded monolayer phase by local bending, and the proteins lined the curved perimeter of the growing fold. No effect on the liquid-condensed phase was observed. Covalently linked dimers resulted in faster kinetics for monolayer folding. The simulation results are in line with existing hypotheses on SP-B activity in lung surfactant and explain its molecular mechanism.
Authors
I am an author on this paper
Click your name to claim this paper and add it to your profile.
Reviews
Recommended
No Data Available