4.5 Article

Solid-State NMR Spectroscopy of Membrane-Associated Myelin Basic Protein-Conformation and Dynamics of an Immunodominant Epitope

Journal

BIOPHYSICAL JOURNAL
Volume 99, Issue 4, Pages 1247-1255

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2010.06.022

Keywords

-

Categories

Funding

  1. Canadian Institutes of Health Research [MOP 74468]
  2. Canada Foundation for Innovation
  3. Ontario Innovation Trust
  4. Ontario Ministry of Research and Innovation
  5. Ministry of Higher Education and Scientific Research of Egypt
  6. Multiple Sclerosis Society of Canada

Ask authors/readers for more resources

Myelin basic protein (MBP) maintains the tight multilamellar compaction of the myelin sheath in the central nervous system through peripheral binding of adjacent lipid bilayers of oligodendrocytes. Myelin instability in multiple sclerosis (MS) is associated with the loss of positive charge in MBP as a result of posttranslational enzymatic deimination. A highly-conserved central membrane-binding fragment (murine N81-PVVHFFKNIVTPRTPPP-S99, identical to human N83-S101) represents a primary immunodominant epitope in MS. Previous low-resolution electron paramagnetic resonance measurements on the V83-T92 fragment, with Cys-mutations and spin-labeling that scanned the epitope, were consistent with it being a membrane-associated amphipathic alpha-helix. Pseudodeimination at several sites throughout the protein, all distal to the central segment, disrupted the alpha-helix at its amino-terminus and exposed it to proteases, representing a potential mechanism in the autoimmune pathogenesis of MS. Here, we have used magic-angle spinning solid-state NMR spectroscopy to characterize more precisely the molecular conformation and dynamics of this central immunodominant epitope of MBP in a lipid milieu, without Cys-substitution. Our solid-state NMR measurements have revealed that the alpha-helix present within the immunodominant epitope is shorter than originally modeled, and is independent of the pseudodeimination, highlighting the importance of the local hydrophobic effects in helix formation and stability. The main effect of pseudodeimination is to cause the cytoplasmic exposure of the fragment, potentially making it more accessible to proteolysis. These results are the first, to our knowledge, to provide atomic-level detail of a membrane-anchoring segment of MBP, and direct evidence of decreased MBP-membrane interaction after posttranslational modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available