4.5 Article

Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures

Journal

BIOPHYSICAL JOURNAL
Volume 96, Issue 2, Pages 521-539

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2008.09.042

Keywords

-

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Foundation for Innovation
  3. Ontario Research Fund

Ask authors/readers for more resources

There is broad interest in the question of fluid-fluid phase coexistence in membranes, in particular, whether evidence for liquid-disordered (l(d))-liquid-ordered (l(o)) two-phase regions or membrane rafts can be found in natural membranes. In model membrane systems, such phase behavior is observed, and we have used deuterium nuclear magnetic resonance spectroscopy to map the phase boundaries of ternary mixtures containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), chain-perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC-d(62)), and cholesterol. For both this ternary model system and the binary DPPC-d(62)/cholesterol sytem, we present clear evidence for l(d)-l(o) two-phase coexistence, We have selected sample compositions to focus on this region of fluid-fluid phase coexistence and to determine its temperature and composition ranges. The deuterium nuclear magnetic resonance spectra for compositions near the l(d)-l(o) phase boundary at high cholesterol concentrations show evidence of exchange broadening or critical fluctuations in composition, similar to that reported by Vist and Davis. There appears to be a line of critical compositions ranging from 48 degrees C for a DOPC/DPPC-d(62)/cholesterol composition of 0:75:25, to similar to-8 degrees C for the composition 57:14:29. At temperatures below this two-phase region, there is a region of three-phase coexistence (l(d)-l(o)-gel). These results are collected and presented in terms of a partial ternary phase diagram that is consistent with previously reported results of Vist and Davis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available