4.5 Article

The effect of the surface functionalization and the electrolyte concentration on the electrical conductance of silica nanochannels

Journal

BIOMICROFLUIDICS
Volume 7, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4811277

Keywords

-

Funding

  1. Fundacao de Ciencia e Tecnologia (FCT) through the Associated Laboratories IN-Institute of Nanoscience and Nanotechnology
  2. International Iberian Nanotechnology Laboratory (INL)

Ask authors/readers for more resources

It is known that the conductance of nanochannels as a function of electrolyte concentration deviates from a linearly proportional relationship and approaches a value independent of the concentration as the electrolyte concentration is lowered. Most of the proposed models account for this behavior by considering a constant surface charge density and an ideal electrolyte solution. However, at low electrolyte concentrations, the ideal electrolyte approximation is no longer valid because the ions that result from the atmospheric carbon dioxide dissolution in water dominate the ionic concentration. In this paper, arrays of silica nanochannels were electrically characterized via conductance measurements. The conductance at low salt concentrations is modeled by a variable surface charge model that accounts for all ionic species in solution. This model was used to determine the variable surface charge of the bare silica nanochannels as well as of chemically modified nanochannels. The model correctly predicted the variation of the nanochannel conductance observed after silane (aminopropyldimethylethoxysilane) functionalization and single-strand DNA immobilization. Finally, pH modification of bulk KCl solutions was employed as an alternative method of changing the surface charge of silica nanochannels. Surface charge calculated from conductance measurements performed at different bulk pH values confirmed that the surface charge of the silica nanochannel walls is sensitive to the H+ concentration. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available