4.3 Article Proceedings Paper

A hierarchical Bayesian approach to multiple testing in disease mapping

Journal

BIOMETRICAL JOURNAL
Volume 52, Issue 6, Pages 784-797

Publisher

WILEY
DOI: 10.1002/bimj.200900209

Keywords

Disease mapping; False discovery rate; Hierarchical Bayesian models; Multiple testing; Posterior probabilities

Ask authors/readers for more resources

We propose a Bayesian approach to multiple testing in disease mapping. This study was motivated by a real example regarding the mortality rate for lung cancer, males, in the Tuscan region (Italy). The data are relative to the period 1995-1999 for 287 municipalities. We develop a tri-level hierarchical Bayesian model to estimate for each area the posterior classification probability that is the posterior probability that the municipality belongs to the set of non-divergent areas. We show also the connections of our model with the false discovery rate approach. Posterior classification probabilities are used to explore areas at divergent risk from the reference while controlling for multiple testing. We consider both the Poisson-Gamma and the Besag, York and Mollie model to account for extra Poisson variability in our Bayesian formulation. Posterior inference on classification probabilities is highly dependent on the choice of the prior. We perform a sensitivity analysis and suggest how to rely on subject-specific information to derive informative a priori distributions. Hierarchical Bayesian models provide a sensible way to model classification probabilities in the context of disease mapping.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available