4.5 Article

Evaluation of mechanical properties of three different screws for rapid maxillary expansion

Journal

BIOMEDICAL ENGINEERING ONLINE
Volume 12, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1475-925X-12-128

Keywords

Rapid maxillary expansion; Mechanical properties; in-vitro study

Ask authors/readers for more resources

Background: The aim of this in vitro study was the evaluation of the mechanical properties the screws for rapid maxillary expansion (RME). Methods: Three commercially available screws for RME were tested: Leone A2620; Dentaurum Hyrax; Forestadent Palatal Split Screw. All expansion screws were 10 mm in size. For the evaluation of mechanical properties, the screws for RME were adjusted using the same maxillary dental model. An Instron 3365 testing machine with a load cell of 5 kN recorded the forces released by the screws at different amounts of activation (1, 5, 10, 15 and 20 quarters of a turn). Each type of screw was tested 10 times. Comparisons between the forces released by the different types of screws at different amounts of activation were carried out by means of analysis of Kruskal-Wallis test with post-hoc test di Tukey (P < 0.05). Results: The results of this study showed that all 3 expansion devices were able to develop forces that could produce a separation of the palatine processes. The Hyrax and A2620 expanders developed force values over 20 kg and the Palatal Split screws about 16 kg. Both the A2620 and Hyrax expanders showed significantly greater amounts of forces at all the different amounts of activations with respect to the Palatal Split screw. Conclusions: All tested devices showed the capability of developing expansion forces (16-20 kg) adequate for RME. The A2620 and Hyrax expanders showed a greater level of rigidity than the Palatal Split screw.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available