4.5 Article

Applying controlled non-uniform deformation for in vitro studies of cell mechanobiology

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 9, Issue 3, Pages 329-344

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-009-0179-9

Keywords

Mechanobiology; Strain field; Strain gradient; Inhomogeneous deformation; Cell orientation; Fibroblast

Funding

  1. U.S. Army Medical Research and Materiel Command (USAMRC) [BFR08-1011-N00]
  2. American Heart Association
  3. Scientist Development [0635013N]

Ask authors/readers for more resources

Cells within connective tissues routinely experience a wide range of non-uniform mechanical loads that regulate many cell behaviors. In this study, we developed an experimental system to produce complex strain patterns for the study of strain magnitude, anisotropy, and gradient effects on cells in culture. A standard equibiaxial cell stretching system was modified by affixing glass coverslips (5, 10, or 15 mm diameter) to the center of 35 mm diameter flexible-bottomed culture wells. Ring inserts were utilized to limit applied strain to different levels in each individual well at a given vacuum pressure thus enabling parallel experiments at different strain levels. Deformation fields were measured using high-density mapping for up to 6% applied strain. The addition of the rigid inclusion creates strong circumferential and radial strain gradients, with a continuous range of stretch anisotropy ranging from strip biaxial to equibiaxial strain and radial strains up to 24% near the inclusion. Dermal fibroblasts seeded within our 2D system (5 mm inclusions; 2% applied strain for 2 days at 0.2 Hz) demonstrated the characteristic orientation perpendicular to the direction of principal strain. Dermal fibroblasts seeded within fibrin gels (5 mm inclusions; 6% applied strain for 8 days at 0.2 Hz) oriented themselves similarly and compacted their surrounding matrix to an increasing extent with local strain magnitude. This study verifies how inhomogeneous strain fields can be produced in a tunable and simply constructed system and demonstrates the potential utility for studying gradients with a continuous spectrum of strain magnitudes and anisotropies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available