4.8 Article

Mechanically induced intercellular calcium communication in confined endothelial structures

Journal

BIOMATERIALS
Volume 34, Issue 8, Pages 2049-2056

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.11.060

Keywords

Plasma lithography; Micropatterning; Calcium; Endothelial cell; Cell signaling

Funding

  1. James S. McDonnell Foundation
  2. NIH [1DP2OD007161-01]

Ask authors/readers for more resources

Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available