4.8 Article

Influence of surface charge and inner composition of nanoparticles on intracellular delivery of proteins in airway epithelial cells

Journal

BIOMATERIALS
Volume 33, Issue 35, Pages 9117-9126

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2012.08.064

Keywords

Porous nanoparticle; Endocytosis; Protein delivery; Airway epithelium; Cell trafficking

Ask authors/readers for more resources

The delivery of protein in the airway using nanoparticles (NP) is an emerging strategy that shows encouraging results in vivo for several applications. However, the mechanisms by which NP deliver proteins to the inside of cells remain poorly understood. In this study, we investigated the intracellular delivery of ovalbumin (OVA) in human airway cells by two porous cationic polysaccharides nanoparticles. These NP have the same surface charge density but differ in that their inner core contains either cationic or anionic charges (respectively: NP+ and DGNP(+)). Confocal microscopy showed a rapid uptake of both NP by human airway cells, followed by a significant accumulation in clathrin vesicles and early endosomes. Both NP were found to associate OVA in a quantitative manner, and this association was stable even in presence of serum proteins. We observed that the two NP greatly increased OVA uptake by human airway cells, meanwhile FRET studies using FITC-labelled NP and TRITC-labelled OVA showed a gradual release of OVA from NP within cells, and this was much faster with DGNP(+) than NP+. These results were confirmed using OVA-DQ to follow OVA degradation fragments within cells. Both NP increased intracellular proteolysis of OVA, however DGNP(+) facilitated OVA escape from endosomes. Studies with trypsin and pepsin at different pH strongly suggested that both NP can protect (in the extracellular medium) or promote (in acidic endosomes) protein proteolysis, depending on the environment. Interestingly, the mechanisms involved could be explained as a function of protein global charge at different pH. All these results confirm the importance of not only the surface charge but also the inner composition of NP in determining their efficacy as tools for the delivery of proteins to different cellular compartments. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available