4.8 Article

One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation

Journal

JOURNAL OF CATALYSIS
Volume 326, Issue -, Pages 127-138

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcat.2015.04.003

Keywords

One-pot synthesis; Ordered mesopores; Ni-V-Al catalyst; Confinement effect; CO methanation

Funding

  1. National High Technology Research and Development Program 863 [SS2015AA050502]
  2. National Natural Science Foundation of China [21476238]
  3. National Basic Research Program [2011CB200906, 2014CB744306]
  4. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA07010100, XDA07010200]
  5. National Research Foundation of Singapore [M4098015.121]

Ask authors/readers for more resources

Preventing both the sintering of Ni particles and the coke formation in supported nickel (Ni) catalysts is a great challenge in catalysis. To address the problem, in this work, we have designed and synthesized a series of ternary Ni-V-Al metal oxide composites with desired structure and composition, for example, the ordered mesoporous structure and various V contents. The catalysts are synthesized via a facile one-pot evaporation-induced self-assembly strategy and are used in CO methanation reaction to produce synthetic natural gas. Our results showed that the Ni-V-Al catalysts with ordered mesopores have better catalytic properties than the impregnation-derived Ni catalysts supported on alumina supports with ordered mesopores or with unordered mesopores. The addition of proper amount of vanadium oxide in the ordered mesoporous Ni-V-Al catalysts further promotes the catalytic activity toward CO methanation. In a 110 h atmospheric-pressure lifetime test, the ordered mesoporous Ni-V-Al catalyst showed significant improvement in both anti-coking and anti-sintering, mainly because of the smaller Ni particle size (<5 nm), the confinement effect of the mesopore channels as well as the incorporation of the vanadium promoter as compared to the catalyst without ordered mesopores. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available