4.8 Article

Protection of oligo deoxynucleotides against nuclease degradation through association with self-assembling peptides

Journal

BIOMATERIALS
Volume 29, Issue 8, Pages 1099-1108

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.10.049

Keywords

oligonucleotide; self-assembling peptide; nuclease resistance; aggregate; centrifugation; fluorescence resonance energy transfer (FRET)

Ask authors/readers for more resources

Aggregates of the self-assembling peptide EAK16II or EAK16IV and oligodeoxynucleotides (ODNs) were prepared, and their stability upon diluting the solution was investigated by UV-vis spectroscopy. The aggregates prepared at pH 4 and pH 7 did not dissociate after the solution was diluted 5- and 10-fold. The resistance against Escherichia coli exonuclease I of the ODN located in the EAK-ODN aggregates was studied by fluorescence resonance energy transfer (FRET) after the ODN had aggregated with EAK 16II or EAK 16IV at pH 4 or pH 7. The effect that the peptide sequence, peptide concentration, pH, and centrifugation had on protecting the aggregated ODN against nuclease degradation was investigated. Significant nuclease resistance was obtained after the EAK-ODN aggregates had been prepared at pH 4, with an EAK16IV concentration greater than a threshold value, and ensuring that the solution was not centrifuged immediately after sample preparation. Centrifuging the EAK16IV-ODN solution immediately after sample preparation resulted in the loss of this nuclease protection. However, if the solution of EAK-ODN aggregates was centrifuged 24h after sample preparation, the nuclease protection afforded by the EAK16IV-ODN aggregates to the ODN was maintained even after being subject to a 10-fold dilution and up to 4 rounds of centrifugation over 4 days. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available