4.7 Article

Physico-chemical screening of accessions of Jatropha curcas for biodiesel production

Journal

BIOMASS & BIOENERGY
Volume 40, Issue -, Pages 155-161

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2012.02.012

Keywords

Jatropha curcas; Biodiesel; Yield; Seed-oil; Physico-chemical characterization

Funding

  1. University Grants Commission, India

Ask authors/readers for more resources

Biodiesel is an alternative environmentally friendly fuel made from renewable biological sources such as vegetable oils and animal fats. The present report deals with screening of 14 accessions of Jatropha curcas collected from all over India to find the most suitable ones for production of Biodiesel. From the 14 accessions of J. curcas located in the plantation at Osmania University, 4 accessions were initially selected on the basis of traits like general appearance, pest resistance, seed yield and seed-oil content. Further, the seed-oil of these 4 accessions was characterized by physico-chemical analysis to identify the elite accessions for production of biodiesel. Highest 1000-seed weight (640 g) and highest percentage seed-oil content (50.16) (extracted by Soxhlet method with hexane as the solvent) was recorded in the KM accession. The transesterification process is affected by the presence of high free fatty acids (recorded in MB accession) and high moisture content (recorded in KM accession) of the seed-oil which also interfere with the separation of fatty esters and glycerol during production of Biodiesel. Further, high phosphorus content and iodine number (recorded in MB accession) interfere with conversion of seed-oil to Biodiesel. In the above context, in spite of its yield being lower, the seed-oil of the RSAD accession was found to be most suitable for Biodiesel production followed by KM, F.W.B and MB accessions, since it contains lower free fatty acids, acid value, viscosity, diglycerides and iodine number. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Agricultural Engineering

Gasification kinetics of chars from diverse residues under suitable conditions for the Sorption Enhanced Gasification process

G. Grasa, I. Martinez, R. Murillo

Summary: Gasification kinetics of six chars from residual origin were studied under relatively low temperature, low CO2, and high H2O partial pressures. The Random Pore Model (RPM) showed the best fit to experimental results, but the selection of the reaction model depended on the ash composition, specifically the presence of alkali and alkaline earth metals. Chars with ash content higher than 30% wt. were modeled with the RPM model, while chars with the highest K/Si ratio required modified versions of the RPM to accurately predict reaction rates. Textural properties played a key role in determining reaction parameters, such as the pre-exponential factor and activation energy, for chars with similar ash content and composition.

BIOMASS & BIOENERGY (2024)

Review Agricultural Engineering

A review on emerging technologies and machine learning approaches for sustainable production of biofuel from biomass waste

V. Godvin Sharmila, Surya Prakash Shanmugavel, J. Rajesh Banu

Summary: Proper treatment and disposal of biomass waste is crucial to prevent environmental deposition and its negative impacts. Biofuel has emerged as a potential alternative to fossil fuels, reducing carbon emissions and meeting global energy demands. This review examines different biomass waste conversion techniques and explores the production of biofuels with zero carbon emissions. Research on anaerobic treatment, metabolic engineering, and artificial intelligence has been conducted to enhance biofuel production efficiency.

BIOMASS & BIOENERGY (2024)

Review Agricultural Engineering

Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production - A review

Selvakumar Periyasamy, Adane Asefa Adego, P. Senthil Kumar, G. G. Desta, T. Zelalem, V. Karthik, J. Beula Isabel, Mani Jayakumar, Venkatesa Prabhu Sundramurthy, Gayathri Rangasamy

Summary: Valorizing agricultural waste into valuable products is crucial for environmental protection and bioeconomy advancement. Preprocessing of agricultural waste is a critical step to convert free carbohydrate molecules for final conversion, and factors such as biomass nature, feed loading, pH, temperature, and time influence the process. This review provides comprehensive information on agricultural waste availability, preprocessing techniques, and factors influencing performance.

BIOMASS & BIOENERGY (2024)

Article Agricultural Engineering

A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste

Aqueel Ahmad, Ashok Kumar Yadav, Achhaibar Singh, Dinesh Kumar Singh

Summary: The study focuses on predicting and optimizing the yield of biogas production in an anaerobic digester using co-digestion. Experimental data was used to develop a machine learning-based prognostic model, and the Response Surface Methodology (RSM) was employed to optimize the parameters. The results demonstrate that RSM coupled with machine learning is an effective technique for modeling, predicting, and optimizing biogas production yield.

BIOMASS & BIOENERGY (2024)

Article Agricultural Engineering

Unraveling the thermal decomposition and conversion mechanisms of silica aerogel-infused cork cells

Yijing Zhong, Wenxiang Zhai, Xinli Wei

Summary: This paper studies the thermal stability and decomposition of cork materials with and without silica aerogel filler. The results show that the decomposition is inhibited and the pyrolysis is significantly reduced with the addition of silica aerogel. This finding suggests that silica aerogel-infused cork may be a promising raw material for biofuel production with reduced environmental pollution.

BIOMASS & BIOENERGY (2024)