4.3 Article

Haemoglobin adducts as biomarkers of exposure to tobacco-related nitrosamines

Journal

BIOMARKERS
Volume 13, Issue 2, Pages 145-159

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/13547500701470561

Keywords

biomarkers; exposure; nitrosoamine-haemoglobin adducts; tobacco; smoking; GC/MS

Ask authors/readers for more resources

A sensitive gas chromatography/mass spectrometry (GC/MS) method was developed to measure nitrosamine-haemoglobin adducts (HPB-Hb) (4-hydroxy-3-pyridinyl-1-butanone) at trace levels in red blood cells of smoking and non-smoking mothers and their newborn babies. GC/MS methods with chemical ionization (CI) of methane reagent gas in both positive and negative ion mode as well as electron ionization (EI) were studied to determine differences in sensitivity among the various ionization methods. Detection limits using both positive and negative chemical ionization modes were found to be 30 fmol HPB, whereas detection using electron impact modes yielded a detection limit of 80 fmol HBP. In order to apply the various methods of detection to tobacco-exposed samples from human populations, we characterized adduct levels in maternal as well as paired fetal samples obtained from mothers exposed to tobacco smoke during pregnancy. Maternal samples were characterized using serum cotinine levels and were classified as non-smokers, passively smoke-exposed women, less than one pack per day smokers and greater than one pack per day smokers. Paired maternal and fetal blood samples were obtained at delivery for qualitative and qualitative analysis of nitrosamine adducts. Comparative derivatization of HPB released under alkaline hydrolysis conditions was performed using O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) and 2,3,4,5,6-pentafluorobenzoylchloride (PFBC). Both negative CI and positive CI modes of analysis were compared to the more widely accepted El modes of mass spectrometric analysis. These results suggest that both NICI and PICI modes of detection offer a greater sensitivity of adduct characterization when compared with EI ionization techniques and that either NICI or PICI modes are preferably applicable towards the detection of human biomarker assessment of tobacco-related nitrosamines.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available