4.5 Article

A-Kinase Anchor Protein 1 (AKAP1) Regulates cAMP-Dependent Protein Kinase (PKA) Localization and Is Involved in Meiotic Maturation of Porcine Oocytes

Journal

BIOLOGY OF REPRODUCTION
Volume 88, Issue 4, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.112.106351

Keywords

cyclic adenosine monophosphate (cAMP); gamete biology; kinases; oocyte maturation; porcine/pig

Funding

  1. Japan Society for the Promotion of Science [11J03140, 22380147, 24658232]
  2. Grants-in-Aid for Scientific Research [24658232, 11J03140, 22380147] Funding Source: KAKEN

Ask authors/readers for more resources

In mammalian oocytes, cAMP-dependent protein kinase (PKA) has critical functions in meiotic arrest and meiotic maturation. Although subcellular localization of PKA is regulated by A-kinase anchor proteins (AKAPs) and PKA compartmentalization is essential for PKA functions, the role of AKAPs in meiotic regulation has not been fully elucidated. In the present study, we performed far-Western blot analysis using porcine PRKAR2A for detection of AKAPs and found, to our knowledge, several novel signals in porcine oocytes. Among these signals, a 150-kDa AKAP showed the major expression and was the product of porcine AKAP1. Overexpression of AKAP1 changed the PKA localization and promoted meiotic resumption of porcine oocytes even in the presence of a high concentration of cAMP, which inhibits meiotic resumption by inducing high PKA activity. On the contrary, knockdown of AKAP1 showed inhibitory effects on meiotic resumption and oocyte maturation. In addition, the expression level of AKAP1 in porcine growing oocytes, which show meiotic incompetence and PKA mislocalization, was significantly lower than that in fully grown oocytes. However, AKAP1 insufficiency was not the primary cause of the meiotic incompetence of the growing oocytes. These results suggest that the regulation of PKA localization by AKAP1 may be involved in meiotic resumption and oocyte maturation but not in meiotic incompetence of porcine growing oocytes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available