4.5 Article

Small RNA Profile of the Cumulus-Oocyte Complex and Early Embryos in the Pig

Journal

BIOLOGY OF REPRODUCTION
Volume 87, Issue 5, Pages -

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.111.096669

Keywords

deep sequencing; early development; early embryo; genomics; microRNA; noncoding RNA; oocyte; oocyte maturation; piwiRNA; Sus scrofa

Funding

  1. USDA National Institute of Food and Agriculture [2008-35205-05309, 2008-35205-18712]

Ask authors/readers for more resources

Small RNA represent several unique noncoding RNA classes that have important function in the development of germ cells and early embryonic development. Deep sequencing was performed on small RNA from cumulus cells (recovered from germinal vesicle [GV] and metaphase II-arrested [MII] oocytes), GV and MII oocytes, in vitro fertilization-derived embryos at 60 h postfertilization (4- to 8-cell stage), and Day 6 blastocysts. Additionally, a heterologous miRNA microarray method was also used to identify miRNA expressed in the oocyte during in vitro maturation. Similar to the results of expression analysis of other species, these data demonstrate dynamic expression regulation of multiple classes of noncoding RNA during oocyte maturation and development to the blastocyst stage. Mapping small RNA to the pig genome indicates dynamic distribution of small RNA organization across the genome. Additionally, a cluster of miRNA and Piwi-interacting RNA (piRNA) was discovered on chromosome 6. Many of the small RNA mapped to annotated repetitive elements in the pig genome, of which the SINE/tRNA-Glu and LINE/L1 elements represented a large proportion. Two piRNA (piR84651 and piR16993) and seven miRNA (MIR574, MIR24, LET7E, MIR23B, MIR30D, MIR320, and MIR30C) were further characterized using quantitative RTPCR. Secretory carrier membrane protein 4 (SCAMP4) was predicted to be subject to posttranscriptional gene regulation mediated by small RNA, by annotating small RNA reads mapped to exonic regions in the pig genome. Consistent with the prediction results, SCAMP4 was further confirmed to be differentially expressed at both transcriptional and translational levels. These data establish a small RNA expression profile of the pig cumulus-oocyte complex and early embryos and demonstrate their potential capacity to be utilized for predictions of functional posttranscriptional regulatory events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available