4.5 Article

Pulse Frequency-Dependent Gonadotropin Gene Expression by Adenylate Cyclase-Activating Polypeptide 1 in Perifused Mouse Pituitary Gonadotroph LbetaT2 Cells

Journal

BIOLOGY OF REPRODUCTION
Volume 81, Issue 3, Pages 465-472

Publisher

SOC STUDY REPRODUCTION
DOI: 10.1095/biolreprod.108.074765

Keywords

follicle-stimulating hormone; gonadotropin-releasing hormone; luteinizing hormone; neuroendocrinology; pituitary

Funding

  1. Ministry of Education, Science, Sports and Culture of Japan

Ask authors/readers for more resources

We examined how pulsatile stimulation with adenylate cyclase-activating polypeptide 1 (ADCYAP1) affected gonadotrophs. In static culture, gonadotropin-releasing hormone (GnRH) stimulated transcription of all the gonadotropin subunits. In contrast, ADCYAP1 increased common alpha-glycoprotein subunit gene (Cga) promoter activity but failed to increase luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoters. Messenger RNAs for Lhb and Fshb were slightly but significantly increased by ADCYAP1 stimulation. The results of cotreatment of the cells with GnRH and ADCYAP1 was not different from the effects of GnRH alone on Lhb and Fshb transcriptional activities as well as on mRNA expressions. To determine the effect of pulsatile ADCYAP1 stimulation on gonadotropin subunit gene expression, perifused LbetaT2 cells were stimulated either at high frequency (5-min ADCYAP1 pulse every 30 min) or at low frequency (5-min ADCYAP1 pulse every 120 min). High-frequency ADCYAP1 pulses preferentially increased Lhb gene expression 2.29-fold +/- 0.15-fold, and low frequency pulses resulted in a 1.55-fold +/- 0.16-fold increase. Fshb gene expression was increased 1.87-fold +/- 0.3-fold by high-frequency ADCYAP1 pulses and 4.3-fold +/- 0.29-fold by low-frequency pulses. These results were similar to the frequency-specific effects of pulsatile GnRH. Follistatin (Fst) gene expression was specifically increased by high-frequency GnRH pulses. High-frequency ADCYAP1 pulses increased Fst to a larger extent (4.7-fold +/- 0.57-fold) than did low-frequency pulse (2.72-fold +/- 1.09-fold). ADCYAP1 receptor gene (Adcyap1r) expression was increased significantly following pulsatile GnRH regardless of pulse frequency. Low-frequency ADCYAP1 pulses, however, increased Adcyap1r expression (16.49-fold +/- 8.41-fold) to a larger extent than high frequency pulses did. In addition, high-frequency ADCYAP1 pulses specifically increased Gnrhr (GnRH receptor) expression by 4.38-fold +/- 0.81-fold; however, low-frequency pulses did not result in an increase. These results suggest that ADCYAP1, like GnRH, specifically regulates Lhb and Fshb subunit gene in a pulse frequency-specific manner. This regulation may involve alteration in numbers of GnRH and ADCYAP1 receptors as well as FST expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available