4.5 Article

Selenium Downregulates Oxidative Stress-Induced Activation of Leukotriene Pathway in Experimental Rats with Diabetic Cardiac Hypertrophy

Journal

BIOLOGICAL TRACE ELEMENT RESEARCH
Volume 161, Issue 1, Pages 107-115

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12011-014-0076-7

Keywords

Diabetes; Streptozotocin; Selenium; Oxidative stress

Ask authors/readers for more resources

Cardiac hypertrophy has been considered as an important risk factor of morbidity and mortality. It is characterized as thickening of ventricle wall of the heart and consequent reduction in the contracting ability of the heart to pump the blood. Hyperglycemia-induced reactive oxygen species act as major mediators of diabetic complications. Inflammation plays an essential role in the development of diabetic cardiac hypertrophy. Selenium has been shown to induce insulin-like and anti-inflammatory effects in human and experimental animals. But, its mechanism of action has not been elucidated. Hence, in order to probe into its mechanism at molecular level, we designed an experiment to study the effect of selenium as sodium selenite in streptozotocin-induced diabetic rats. The rats were divided into four groups and maintained as follows: (1) controls, (2) sodium selenite-treated controls, (3) diabetic, and (4) sodium selenite-treated diabetic rats. Duration of the experiment was 30 days. Selenium supplementation enhanced the streptozotocin-induced reduction in the activities of antioxidant enzymes, decreased the serum glucose level, glycated hemoglobin content, concentration of high-sensitivity C-reactive protein, levels of lipid peroxidation products, as well as inflammatory parameters. Decrease in the phospholipase activity by selenium supplementation also contributed to the downregulation of leukotriene pathway. It also downregulated the expressions of nuclear transcription factor kappa B (NF kappa B), lipoxygenase, cyclooxygenase, 5-lipoxygenase-activating protein, and receptor for leukotriene B4. Hence, selenium decreased the production of reactive oxygen species and inhibited the activation of NF kappa B-mediated transcription of pro-inflammatory mediators which resulted in the downregulation of leukotriene pathway in diabetic cardiac hypertrophy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available